
PHYSICAL REVIEW B 66, 085310 ~2002!
Exciton states and optical transitions in colloidal CdS quantum dots:
Shape and dielectric mismatch effects
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We present a theoretical investigation of electron-hole and exciton energy spectra as well as oscillator
strengths of optical transitions in colloidal CdS quantum dots~QD’s! with spherical and tetrahedral shape. The
Coulomb potential energy of the electron-hole system is treated taking into account the dielectric mismatch at
the QD boundaries. Calculation of electron-hole energy spectrum and Coulomb potential energy in tetrahedral
QD’s is carried out using the finite difference method. It is shown that the bulk Coulomb potential energy with
the dielectric constant of QD leads to lower exciton energy levels as compared to the Coulomb potential, which
includes electron-hole interaction and self-action energies. The Coulomb potential changes the electron-hole
pair energies without dielectric confinement contributions in such a way that the exciton ground state becomes
active for optical transitions in dipole approximation for both tetrahedral and spherical QD’s while the lowest
electron-hole pair energy level is active for tetrahedral and passive for spherical QD’s. The exciton binding
energy in both types of QD’s is enhanced by a factor of 2 in the presence of the dielectric mismatch. It is
proven that the inclusion of the real QD shape and dielectric mismatch is important not only for the quanti-
tative analysis but also for the qualitative description of optical properties of colloidal CdS QD’s.
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I. INTRODUCTION

One of the most important features of low-dimension
semiconductor structures is the confinement driven quan
tion of energy spectrum of charge carriers. The effect
quantum confinement becomes stronger as the confine
dimension increases and the size of a structure decre
While bulk materials have a three-dimensional energy b
structure, one-dimensional confinement of quantum w
leads to a two-dimensional energy band structure near e
quantized energy level in the well and two-dimensional c
finement of quantum wires leads to a one-dimensional
ergy band structure near each quantized energy level in
wire. At the same time, three-dimensional confinement
quantum dots~QD’s! leads to a discrete~atomiclike! lower
part of the energy spectrum. When the effective dimensi
of a QD are less than the bulk exciton Bohr radius, the
citon energy spectrum is primarily defined by the confin
ment, while the Coulomb interaction plays a minor role.

In order to predict novel physical phenomena and sugg
new technical applications, researchers investigate man
tations of quantum-size effects in nanostructures both th
retically and experimentally.1,2 Not long ago, extremely
high-quality superlattices, multilayers, and monolayer se
conductor structures have been fabricated.3 Energy spectra of
charge carriers and excitons in quantum wires with rectan
lar, T-shaped, V-groove, and other cross sections have b
investigated.4–10 Recently, a significant attention has be
attracted to QD’s due to their promise for applications
basic elements for semiconductor lasers, nonlinear tra
formers of light, computer memory, and elements of qu
tum logic gates.11–13
0163-1829/2002/66~8!/085310~13!/$20.00 66 0853
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Some of the most effective methods of investigation
carrier energy spectra in QD’s are optical ones. They inclu
absorption of light, photoluminescence, photoluminesce
excitation, Raman scattering, etc.14–19At the same time, the
present-day technology does not allow the synthesis of
rays of QD’s with identical shape, size, and orientatio
Therefore, experimentally obtained characteristics of Q
are averaged and include statistical properties of the
semble. It should be mentioned, however, that there are
cial methods that allow for observation of optical charact
istics of single QD’s.20–22The crystal structure and shape
QD’s depends mainly on the growth conditions. For instan
colloidal CdSe QD’s with hexagonal crystallinity, as well a
CdSe, CdSxSe12x , PbS, and PbSe QD’s grown in glasse
have nearly spherical shape.15,16,23–25Electrochemically self-
assembled CdS QD’s in the Al2O3 matrix have quasicylin-
drical shape.26,27 InAs/GaAs QDs are pyramidal with squar
base,28,29 and GaN/AlN QD’s are truncated hexagon
pyramids.30 Alkali-haloid nanocrystals in an alkali-haloid
matrix usually form rectangular prisms.31

The key problem in the investigation of optical properti
of QD’s is finding the energy spectrum of confined char
carriers and the corresponding wave functions. The Coulo
interaction of an electron and a hole in the exciton influen
the energy of optical absorption and photoluminescence
splits the degenerate electron-hole pair levels. In parabo
one-band, and infinite barrier approximations for structu
with simple geometrical shapes~planar, cylindrical, spheri-
cal!, the energy spectrum can be found from general exp
sion En;an

2/R2, wherean(n51,2, . . . ) arenumbers close
to a corresponding real numbern, R is a characteristic di-
©2002 The American Physical Society10-1
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mension of the system, e.g., thickness of the layer, radiu
the cylinder, or radius of the sphere. Nonparabolicity of e
ergy bands, degeneracy of valence bands, and finitene
potential barriers strongly complicate the structure of
size-quantized energy spectrum. In this case, the detailed
lution of the Schro¨dinger equation is needed even for sphe
cal QD’s. Nevertheless, a spherically symmetric QD, hav
the simplest shape, is commonly used in the so-called sph
cal approximation for description of electronic and optic
properties of QD’s. In particular, CdS/HgS/CdS quantum-
quantum wells~QDQW’s!, grown32,33 in an aqueous solu
tion, are considered34–36 spherical. There are several stag
in the QDQW growth. First, the core of the futur
structure—a CdS tetrahedron with cubic crystal lattice
formed. After subsequent growing of the HgS and C
monolayers onto the surface of the core, the shape of
nanocrystal becomes a truncated tetrahedron, what is
deed, closer to spherical shape than to tetrahedral one. T
fore, for simplicity, in all previous theoretical calculation
aimed to interpret the optical properties of QDQW’s, t
shape of the nanocrystal was considered spherical.

The dielectric mismatch at the interfaces of low
dimensional structures is also known to have a consider
effect on the exciton energies. The dielectric enhancemen
excitons has been demonstrated in quantum wells37 and in
quantum wires.38 A similar effect is expected in QD’s.39

Not only multiple QDQW’s, but also single CdS QD
have been studied experimentally.21,22Thus, it is important to
investigate electron, hole, and exciton spectra as well as
tical properties of colloidal CdS nanocrystals taking into a
count both shape~tetrahedral or spherical40! and dielectric
mismatch effects. The comparison of the theoretical res
with experiment will help in interpretation of the experime
tal data. Since experimental data is available for CdS Q
with diameters from one to ten nanometers it is also inter
ing to compare the validity of different theoretical metho
for description of exciton spectra in a range of QD sizes

II. THEORY

A. Electron and hole states

We consider colloidal CdS QD’s with cubic crystal lattic
Since the band gap of bulk CdS is wide~2.5 eV!, we study
electron and hole states of spherical and tetrahedral QD’
using separate one-band electron and six-band hole effec
mass Hamiltonians. The band gap of the exterior medium
H2O is about 8 eV, therefore potential barriers for both el
trons and holes in CdS QD’s with diameters larger than 2
are so high that they can safely be considered infinite. Th
the infinite barrier approximation is used in this paper.

In the presence of the dielectric mismatch, the elect
~hole! energy (Ee(h)) can be separated into a quantum co
finement energy (Ee(h)

QC ), which describes the electron~hole!
confinement energy in the absence of the dielectric m
match, and dielectric confinement contribution (DEe(h)

DC ),
which describes the self-action energy of an electron~hole!
in the electrostatic potential generated by its own ima
charge due to the dielectric constant discontinuity at the
boundary. Further in Sec. II A, we consider only quantu
08531
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confinement electron and hole states in QD’s. The index
will be omitted. To calculate the exciton states, the dielec
confinement contribution to the electron and hole energ
will be taken into account in Secs. II B and II C as a part
the Coulomb potential energy of the electron-hole system

1. Spherical QD

The one-band effective-mass Schro¨dinger equation for the
envelope wave function of an electron in a QD has the fo

2
\2

2me
¹2Fe~r !1Ue~r !Fe~r !5EeFe~r !, ~1!

where me is the electron effective mass andUe(r ) is the
electron confinement potential energy, which is equal to z
inside the QD and infinity outside the QD;Ee andFe(r ) are
the quantum confinement electron eigenenergy and the
responding envelope wave function. The solution of Eq.~1!
for a spherical QD with radiusR is well known and can be
written as

Fe
l ,m,n~r !5Al ,n j l S a l ,n

r

RDYl ,m~u,f!, ~2!

whereAl ,n is a normalization coefficient,j l(x) is a spherical
Bessel function,a l ,n is thenth zero of the functionj l(x), and
Yl ,m(u,f) is the spherical harmonic. In Eq.~2!, n is radial
and l ,m are angular quantum numbers. Due to the spher
symmetry, the eigenenergy

Ee
l ,n5

\2

2me
S a l ,n

R D 2

~3!

is (2l 11)-fold degenerate with respect to the angular m
mentum projectionm. Common notationsnS, nP, nD, . . . ,
are used to describe eigenstates~3! with angular momental
50,1,2, . . . , respectively.

The six-band Hamiltonian for a hole in a spherical QD
given in Ref. 40 in the spherical approximation. The soluti
of the corresponding Schro¨dinger equation can be written i
the following analytical form:

Ch
j ,m,p,n~r !5 (

J51/2

3/2

(
m52J

J

FJ,m
j ,m,p,n~r !i (J2m)(222J)uJ,m ,

~4!

whereuJ,m are the Bloch functions of the valence band41 and
FJ,m

j ,m,p,n(r ) are the envelope functions given by

FJ,m
j ,m,p,n~r !5 ( 8

l 5u j 2Ju

j 1J

(
l52 l

l

CJ,m; l ,l
j ,m RJ,l

j ,p,n~r !Yl ,l~u,f!.

~5!

Here, CJ,m; l ,l
j ,m are the Clebsch-Gordan coefficients a

RJ,l
j ,p,n(r ) are the radial envelope functions, which can

found as a linear combination of few functionsj l(x) or i l(x)
@i l(x) is a spherical Bessel function of the second kind#. The
prime near the first sum in Eq.~5! shows that only values o
l satisfying equality (21) j 2 l 11/2[p should be taken, where
p561 is the conserved parity. Another quantum numbers
0-2
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Eq. ~4! are j ,m ~angular! and n ~radial!. The eigenenergy
Eh

j ,p,n , which can be found applying the boundary conditi
Ch

j ,m,p,n(r )ur 5R50 to the wave function~4!, is (2j 11)-fold
degenerate with respect to the projectionm of the total an-
gular momentumj. Common notationsnQj are used to de-
scribe hole eigenstates, where symbolQ5S,P,D, . . . , cor-
responds to the lowest value of momentuml in Eq. ~5!, i.e.,
min(j1p/2,u j 23p/2u).

2. Tetrahedral QD

To obtain electron states in the tetrahedral QD, the Sch¨-
dinger equation~1! is numerically solved using a finite dif
ference method. Let us choose the coordinate system fo
considered tetrahedral QD as shown in Fig. 1. A uniform g
with step length 2a/N is introduced in the cube with edge 2a
~dashed cube in Fig. 1! circumscribed about the tetrahedro
The grid has (N21)3 nodes inside the cube, which is sp
into N3 cubic cells. To satisfy the hard wall boundary cond
tions, wave functions are set to zero at the surface and
side the tetrahedron. Therefore, it is necessary to cons
only N5(N21)@(N21)212#/3 nodes inside the tetrahe
dron. The eigenvalues and eigenvectors of the resultingN
3N Hamiltonian matrix are computed using a modifi
Davidson-Liu algorithm.42 The calculation does not take ad
vantage of the tetrahedral symmetry of the problem. It
known from the group theory, that the degeneracyl of elec-
tron eigenenergies in a tetrahedral QD can be onefold, t
fold, or threefold. As seen from Eq.~1!, the dependence o
the energy levels on the QD dimensiona has a form similar
to Eq. ~3!

Ea
l,n5S a0

a D 2

Ea0

l,n ~6!

and, as a consequence of the normalization, correspon
envelope wave functions depend ona as

FIG. 1. Orientation and dimensions of a tetrahedral QD.a is the
distance from the center of the tetrahedron to the middle of its e
08531
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Fa
l,m,n~r !5S a0

a D 3/2

Fa0

l,m,nS a0

a
r D , ~7!

wheren is the number of the level with degeneracyl, m
51, . . . ,l counts degenerate states, anda05const. Using
Eqs.~6! and~7! one can find the eigenstates for a tetrahed
QD with arbitrary size knowing the solution of Eq.~1! for
a5a0.

The six-band Hamiltonian for a hole in a QD with arb
trary shape and with cubic crystal lattice can be written in
Bloch function basis

u65$uX↑&,uY↑&,uZ↑&,uX↓&,uY↓&,uZ↓&% ~8!

as41

Ĥ65S Ĥ3 0

0 Ĥ3
D 1ĤSO. ~9!

Hereafter we take the negative hole energy as posit
The operatorĤ3 in the first term of Eq.~9! is the three-band
hole Hamiltonian in the Bloch function basis

u35$uX&,uY&,uZ&%. ~10!

As seen from Eqs.~9!–~13! in case of zero spin-orbit cou
pling (D50), the eigenstates of the Hamiltonian~9! are the
twofold spin degenerate states of the HamiltonianĤ3. The
latter Hamiltonian has the form

Ĥ35
1

2m0 S Lp̂x
21Mp̂'x

2 Np̂xp̂y Np̂xp̂z

Np̂xp̂y Lp̂y
21Mp̂'y

2 Np̂yp̂z

Np̂xp̂z Np̂yp̂z Lp̂z
21Mp̂'z

2
D ,

~11!

where p̂52 i\¹ and p̂' i
2 5 p̂22 p̂i

2 ( i 5x,y,z). Luttinger
effective-mass parametersL, M, andN from Eq. ~11! can be
determined by fitting the energy bands near the valence b
top with those calculated by the empirical pseudopoten
method as in Ref. 43. The second term in Eq.~9! is the
spin-orbit Hamiltonian

ĤSO5S ĤSO
(1) ĤSO

(2)

ĤSO
(2)† ĤSO

(1)*
D , ~12!

where

ĤSO
(1)5

D

3 S 1 i 0

2 i 1 0

0 0 1
D ,ĤSO

(2)5
D

3 S 0 0 21

0 0 i

1 2 i 0
D ,

~13!

andD is the spin-orbit splitting energy.
Since the spin-orbit splitting energy in CdS is small (D

570 meV), it is convenient to obtain the eigenstates of
Hamiltonian ~9! in the following way. First, eigenenergie
E3,a0

and eigenfunctionsC3,a0
of the three-band Hamiltonian

~11! are numerically computed for a tetrahedral QD with

e.
0-3



d
im
e

en

n

o

t
re

u
fu
u
ia
e

io

lc
a

fo
an

-

-

nt

al

a
in-

y

-
-

akes

d

fact
on
m,

n

a

f

V. A. FONOBEROV, E. P. POKATILOV, AND A. A. BALANDIN PHYSICAL REVIEW B66, 085310 ~2002!
certain dimensiona5a0 using the finite difference metho
described above for the calculation of electron states. S
larly to electron energy levels, three-band hole energy lev
can be one fold, two fold, or three fold degenerate. Eig
states for a QD with an arbitrary dimensiona can be found
using the size dependencies given by Eqs.~6! and ~7! for
electron states. Second, eigenenergiesE6,a and eigenfunc-
tions C6,a of the six-band Hamiltonian~9! are computed by
expanding six-band wave functions in terms of three-ba
wave functions as

C6,a~r !5S a0

a D 3/2

(
n,s

An,s~a!C3,a0

n S a0

a
r D us&, ~14!

where An,s(a) are the expansion coefficients, the set
quantum numbers of three-band states is denoted asn, ands
is the spin of the missing electron. Considering the symme
of the HamiltonianĤ6, it can be shown, that hole states a
either two fold or four fold degenerate. The notationnl ,
wherel52 or 4 is the degeneracy andn51,2, . . . , is the
ordinal number of a level with givenl, is used to label hole
energy levels.

The main benefit of using the described in the previo
paragraph approach to obtain six-band hole states as a
tion of QD size is that the computationally intensive calc
lation of eigenvalues and eigenvectors of the Hamilton
matrix is performed only one time, i.e., for a certain QD siz
While three-band envelope wave functionsF3,i of

C35(
i 51

3

F3,iu3,i ~15!

can be chosen real valued, six-band envelope wave funct
F6,i of

C65(
i 51

6

F6,iu6,i ~16!

are essentially complex valued. Therefore, the direct ca
lation of six-band hole states would require dealing with
6N36N complex matrix instead of 3N33N real matrix for
three-band hole states.

B. Potential energy of the electron-hole system

Coulomb potential energy of the electron-hole system
a nanostructure with spatially modulated dielectric const
e(r ) is

U~re ,rh!5Vint~re ,rh!1Vs-a~re!1Vs-a~rh!. ~17!

In Eq. ~17!, Vint(re ,rh) is the electron-hole interaction en
ergy; it can be found from the Poisson equation

¹rh
e~rh!¹rh

Vint~re ,rh!5
e

e0
r~re ,rh!, ~18!

wherer(re ,rh) is the charge density at the pointrh of an
electron with the coordinatere . Second and third terms in
the right-hand side of Eq.~17! are electron and hole self
action energies, respectively; they are defined as
08531
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Vs-a~r !52
1

2
lim

r8→r

@Vint~r ,r 8!2Vint
B ~r ,r 8!#, ~19!

whereVint
B (re ,rh) is the solution of the Poisson equation~18!

in the left-hand side of which functione(rh) is replaced with
e(re), i.e., it is the local bulk solution of Eq.~18!. Further,
Eq. ~18! is addressed to QD’s with the dielectric consta
equal to« inside the QD and«8 outside the QD.

1. Spherical QD

In the electrostatic case, the charge densityr(re ,rh) is
given by

r~re ,rh!5ed~re2rh!, ~20!

whered(r ) is the Dirac delta function. Therefore, the loc
bulk solution of Eq.~18! is

Vint
B ~re ,rh!52

e2

4pe0e~re!ure2rhu
. ~21!

Equation ~18! can be solved almost analytically for
spherical QD. Since both electron and hole are confined
side the QD of radiusR, only solution for r e,R and r h
,R is presented:

Vint~re ,rh!5Vint
B ~re ,rh!2

e2~«2«8!

4pe0«R (
l 50

`

Pl S rerh

r er h
D

3
l 11

~ l 11!«81 l«
S r er h

R2 D l

, ~22!

wherePl(x) is the Legendre polynomial of orderl. Substi-
tution of Eq. ~22! into Eq. ~19! gives the self-action energ
for r ,R:

Vs-a~r !5
e2~«2«8!

8pe0«R (
l 50

`
l 11

~ l 11!«81 l«
S r

RD 2l

. ~23!

As seen from Eqs.~22! and~23! in the absence of the dielec
tric mismatch («85«), the electron and hole self-action en
ergies are zero, and the electron-hole interaction energy t
its bulk value. Considering Eq.~17!, one can notice that the
part ofVint(re ,rh) given by the second term in the right-han
side of Eq.~22! and the sumVs-a(re)1Vs-a(rh) have oppo-
site signs and, on average, close absolute values. This
greatly reduces the influence of the dielectric mismatch
the Coulomb potential energy of the electron-hole syste
making this energy close to its bulk value given by Eq.~21!.

2. Tetrahedral QD

Among nonspherical QD’s, a partially analytical solutio
of Eq. ~18! can be found for a cubic QD.44 For an arbitrary
QD shape, in our case for tetrahedral one, Eq.~18! can be
solved only numerically. The finite difference method on
composite grid is applied to solve the Poisson equation~18!:
the differential equation~18! is transformed into a system o
linear equations which is solved iteratively.
0-4
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The composite grid is constructed as follows.~i! a uni-
form grid with step lengthL/N8 is introduced in the cube
with edgeL.2a @the dashed cube from Fig. 1 uniforml
stretched by a factorL/(2a)#. The uniform grid has (N8
11)3 nodes, including those on the cube’s facets.~ii ! A uni-
form grid with step length 2L/N8 is introduced in the cube
with edge 2L ~the previous cube uniformly stretched by
factor 2!. The latter grid adds (N811)32(N8/211)3 new
nodes to the former one, resulting in a composite grid w
2(N811)32(N8/211)3 nodes.~iii ! Step~ii ! is repeated un-
til the composite grid with (N811)31(K21)@(N811)3

2(N8/211)3# nodes is constructed in the cube with ed
KL. After the appropriate boundary conditions are applied
the facets of the final cube~even zero boundary condition
work well if KL@2a), the number of remaining nodes, an
consequently, the order of the resulting linear system isN 8
5(N821)31(K21)@(N811)32(N8/211)3#. If one con-
sidered the uniform grid with step lengthL/N8 in the cube
with edgeKL, the corresponding order of the linear syste
would be (KN821)3, what is approximatelyK2 times larger
than N 8. Due to the long-range character of the Coulom
interaction, in order to find the exact Coulomb potential
side the QD, one has to consider the region about 10 ti
larger than the QD dimension, i.e.,K'10. The advantage o
using the composite grid, as described here, is obvious.

The charge densityr(re ,rh) at the nodenh of an electron
at the nodene belonging to thekth level of the composite
grid can be written, within the finite difference method,
(k51, . . . ,K)

r~ne ,nh!5H eS N8

kL D 3

, ne5nh ,

0, neÞnh .

~24!

The electron-hole interaction energyVint(ne ,nh) is evaluated
using Eq.~18! with the charge density~24! for each nodene .
It is easy to prove, that the correct self-action energy on
composite gride can be given by Eq.~19! in the form

Vs-a~n!52
1

2
@Vint~n,n!2Vint

B ~n,n!#, ~25!

where the local bulk solutionVint
B (n,n) is found as described

below Eq.~19!.
As seen from Eqs.~17!–~19!, the dependence of the Cou

lomb potential energy on the QD dimensiona has the form

Ua~re ,rh!5S a0

a DUa0S a0

a
re ,

a0

a
rhD . ~26!

This fact, again, allows one to obtain the Coulomb poten
energy for any value of dimensiona by computing a single
casea5a0.

C. Exciton states and oscillator strengths

Electron and hole states and electron-hole potential
ergy described above are used here to find exciton states
their oscillator strengths. For conciseness, we consider
tetrahedral QD’s. An analogous approach can be applied
08531
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spherical QD’s. The exciton Hamiltonian in the envelo
function representation is written as

Ĥexc5Ĥe~re!1Ĥ6~rh!1U~re ,rh!, ~27!

whereĤe , Ĥ6, andU are defined by Eqs.~1!, ~9!, and~17!,
correspondingly. Exciton states are eigenstates of the e
tion

ĤexcCexc5EexcCexc. ~28!

Neglecting the electron-hole potential energyU in Eq. ~27!,
the solution of Eq.~28! are electron-hole pair states

Ce-h
k,se ;n

~re ,rh!5^SseuFe
k~re!C6

n~rh!, ~29!

wherek andn denote the sets of quantum numbers of on
band electron and six-band hole states, respectively,se is the
electron spin,̂Su is the Bloch function with zero momentum
Fe is the electron envelope function, andC6 is the hole
wave function given by Eqs.~16! and ~8!. As seen, the di-
electric confinement contribution is not included in the de
nition ~29! of the electron-hole pair states.

Oscillator strengths of the electron-hole pair states, av
aged over the electron spin, can be calculated as

f e-h
k;n}(

se

U E d~re2rh!p̂hCe-h
k,se ;n

~re ,rh!dredrhU2

, ~30!

wherep̂h[2 i\“ rh
is the hole momentum. Substituting Eq

~7! and~14!, ~15! into Eqs.~29!, ~30! and taking into accoun
relations^seush&5dse ,sh

and

^Su p̂i uu3,j&5Pd i , j , ~ i , j 5x,y,z;P5const! ~31!

one obtains

f e-h
k;n~a!}(

s,i
U(

n8
An8,s

n
~a!E Fe,a0

k ~r !F3,a0 ,i
n8 ~r !drU2

.

~32!

Since the electron-hole overlap integrals in Eq.~32! are
taken at a fixed value of QD dimensiona5a0, the depen-
dence of oscillator strengths ona comes from the size-
dependent expansion coefficientsAn,s of the hole wave func-
tion ~14!.

The exciton wave function can be expanded in terms
wave functions of electron-hole pair states~29! as

Cexc
se 5(

k,n
Bk,nCe-h

k,se ;n . ~33!

Substituting Eq.~33! into Eq. ~28! and taking into accoun
Eq. ~27! one can rewrite equation~28! in the following ma-
trix representation:

(
k,n

Hk,n
k8,n8Bk,n5EexcBk8,n8 , ~34!

where the Hamiltonian matrix has the form
0-5
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Hk,n
k8,n85~Ee

k1E6
n!dk,k8dn,n81Uk,n

k8,n8 , ~35!

andUk,n
k8,n8 is the matrix of the electron-hole potential ener

U constructed on the basis functionsCe-h
k,se ;n . The form of

the Hamiltonian matrix for any value of dimensiona can be
obtained from Eq.~35! for a5a0 if one multiplies the first
term in the right-hand side of Eq.~35! by (a0 /a)2 @according
to Eq. ~6!#, multiplies the second term by (a0 /a) @according
to Eq. ~26!#, and replaces the expansion coefficien
An,s(a0), defining hole wave functions~14!, by An,s(a).

The oscillator strengthf exc
m for an exciton levelm is cal-

culated using Eq.~30! whereCe-h
k,se ;n is replaced byCexc

m,se

given by Eq.~33!. At the same time, Eq.~32! remains valid
if one replacesAn8,s

n (a) by (nBk,n
m (a)An8,s

n (a) and sums the
expression under the absolute value sign overk.

III. NUMERICAL RESULTS AND DISCUSSION

Parameters employed for the calculation of electron, h
and exciton states in tetrahedral and spherical CdS QD’s
listed in Table I. The calculation of electron and hole sta
in tetrahedral and spherical QD’s has been carried out
cording to Sec. II A. In order to find electron and three-ba
hole states in a tetrahedral QD, the grid with step len
2a/60 has been used. 20 lowest electron states and 43 lo
hole states~including degeneracy! have been computed usin
the matrix electron Hamiltonian of orderN568 499 and the
matrix three-band hole Hamiltonian of order 3N5205 497
correspondingly.

In the upper part of Fig. 2, wave functions of the thr
lowest electron states are shown. Among those states,e1 and

TABLE I. Parameters of cubic CdS:Eg : band gap;D: spin-orbit
splitting; me : effective electron mass;«: dielectric constant;L, M,
andN: Luttinger parameters;g1 , g: Luttinger parameters andmlh ,
mhh : light and heavy hole masses in the spherical approxima
~Ref. 41! («8 - dielectric constant of H2O!.

Eg , eV D, eV « «8
2.5 ~Ref. 34! 0.07 ~Ref. 45! 5.5 ~Ref. 34! 1.78 ~Ref. 34!

me , m0 L M N
0.2 ~Ref. 34! 4.863a 1.064a 5.633a

g1 g mlh , m0 mhh , m0

2.330b 0.817b 0.252c 1.434c

aAs in Ref. 43, parametersL, M, andN have been determined b
fitting the energy bands near the valence band top with those
culated by the empirical pseudopotential method@form factors of
cubic CdS have been taken from Refs. 46 and 47; lattice cons
of cubic CdS is 0.582 nm~Ref. 33!; reciprocal lattice vector has
been restricted toG2<28#.

bParametersg1 andg have been calculated fromL, M, andN using
relationsg15(L12M )/3 andg5(2(L2M )13N)/30.

cParametersmlh andmhh have been calculated fromg1 andg using
relationsmlh5m0 /(g112g) and mhh5m0 /(g122g). Values of
these parameters are close to hole masses for cubic CdS stud
Ref. 40.
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e3 are nondegenerate ande2 is threefold degenerate. In th
rest of Fig. 2,X, Y, andZ components of the wave function
of threefold degenerate lowest hole statesh1, h2 and the
state h6 are presented. Our choice of the Bloch functi
basis~10! is convenient for tetrahedral QD’s, because it
lows us to choose and present one such particular three-
wave function of a triply degenerate state, that two oth
three-band wave functions can be easily found from the s
metry considerations. It should be noted, that while the w
function e1 of electron ground state is fully symmetrical,
fully symmetrical component does not enter the hole grou
stateh1 and appears only inh2 (h2X). 20 lowest electron
energy levels for tetrahedral, cubical,44 and spherical CdS
QD’s are listed in Table II as a function of QD volume. It
seen that the electron ground state energy as well as in
level distances decrease in the sequence of QD’s with e
volumes: tetrahedral→ cubical→ spherical. It is also seen
that interlevel distances in QD’s with equal ground state

n

al-

nt

d in

FIG. 2. e1, e2, e3 electron andh1, h2, h6 hole wave func-
tions calculated within one and three band models correspondin
Light and dark colors denote positive and negative values of
wave function. Each electron wave function is represented by
isosurface of the probability densitype50.8. Each of three compo
nents of hole wave functions is represented by the isosurface o
probability densityphX

5phY
5phZ

50.8 of the particular wave func-
tion component. The relative contribution of all three hole comp
nents to the integral probability density is indicated near each w
function component.
0-6



g

il
ia

fo
s
ed
o

d

c
m
ue
tr

6th
val
s to
ate
in

ith

in
’s is

in
ra-
f
the

d
D

I B.

y in
D
ed
of
QD

ach

or
n-
le-

en
rg

EXCITON STATES AND OPTICAL TRANSITIONS IN . . . PHYSICAL REVIEW B66, 085310 ~2002!
ergies increase, on average, and the highest order of de
eracy rises in the aforementioned sequence.

Using the wave functions of the three-band hole Ham
tonian found above, 86 states of the six-band Hamilton
are computed as given by Eq.~14! for all required values of
the QD dimensiona. In Figs. 3~a! and 3~b!, hole energy
levels, calculated within the six-band model, are depicted
spherical QD’s as a function ofR and for tetrahedral QD’s a
a function of a, respectively. The hole energy is count
from the lowest state containing a fully symmetrical comp
nent: 1S3/2 for spherical QD’s and 14 for tetrahedral QD’s
~the dependence of the reference level on the correspon
dimension is indicated in inserts!. Level labeling has been
described in Sec. II A.

The size quantization of an electron in CdS QD’s is mu
stronger than that of a hole. This fact is related to the co
plex structure of the valence band as well as with the val
of the effective-mass parameters. Thus, in the case of te

TABLE II. First 20 electron energy levels~including degen-
eracy! in tetrahedral, cubical, and spherical CdS QD’s. The deg
eracy is indicated for each level. Electron ground state ene
~meV! as a function of the QD volume (nm3) is calculated for
different QD shapes as E1

tetr(V)56905.72/V2/3, E1
cub(V)

55641.09/V2/3, andE1
sph(V)54886.16/V2/3.

n En
tetr/E1

tetr En
cub/E1

cub En
sph/E1

sph

1 1.000 00 31 1.000 00 31 1.000 00 31
2 1.844 26 33 2.000 00 33 2.045 75 33
3 2.759 52 31 3.000 00 33 3.365 63 35
4 2.927 86 33 3.666 67 33 4.000 00 31
5 3.057 66 32 4.000 00 31 4.947 63 37
6 4.015 24 33 4.666 67 36 6.046 80 33
7 4.209 20 31 5.666 67 33
8 4.363 15 33
9 4.532 92 33
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hedral CdS QD, the energy interval between the 1st and 8
hole levels is two times narrower than the energy inter
between the 1st and 2nd electron levels. The latter lead
the conclusion that inclusion of the electron ground st
only is enough to describe main optical transitions
CdS QD’s.

The oscillator strengths~see Sec. II C! of electron~ground
state!-hole pairs are shown in Figs. 3~c! and 3~d! for spheri-
cal and tetrahedral QD’s correspondingly. Hole levels w
nonzero oscillator strengths are depicted in Figs. 3~a! and
3~b! with thick curves. One of the substantial differences
the hole energy spectra of spherical and tetrahedral QD
that the hole ground state is always optically passive
spherical QD’s and, on the contrary, optically active in tet
hedral QD’s. In conformity with Eq.~32!, the dependence o
oscillator strengths on the QD size is a consequence of
nonzero value of the spin-orbit splitting energyD in CdS.
It is interesting that the optical activity of the hole groun
state in tetrahedral QD raises with increasing of the Q
dimensiona.

The electron-hole potential energy~17! in spherical and
tetrahedral QD’s has been calculated according to Sec. I
A composite grid with parametersL52.4a, N8536, and
K55 has been employed to calculate the potential energ
tetrahedral QD’s. While the resulting step length in the Q
region is 2a/30, i.e., twice coarser than the step length us
in the calculation of electron and hole states, the volume
the considered space region is 648 times larger than the
volume. Discretization of the Poisson equation~18! on the
described grid leads to the linear system of orderN 8
5218 051. This system should have been solved for e
nodene inside the tetrahedron, i.e., 8149 times.

Since for the investigation of optical transitions and f
the calculation of exciton states in QD’s we should be co
cerned only with the electron ground state, the matrix e

ment of the electron-hole potential energyUk,n
k8,n8 from Eq.

-
y

t

e

n

s

FIG. 3. Quantum confinemen
hole energy levels~upper panels!
and oscillator strengths of som
electron-hole pair states~lower
panels! for spherical @panels ~a!
and ~c!# and tetrahedral@panels
~b! and~d!# QD’s as a function of
their dimensions. Thick curves in
panels~a! and ~b! represent hole
states corresponding to electro
~ground state!-hole pairs with
nonzero oscillator strength
shown in panels~c! and ~d!, re-
spectively.
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V. A. FONOBEROV, E. P. POKATILOV, AND A. A. BALANDIN PHYSICAL REVIEW B66, 085310 ~2002!
~35! reduces toU0,n
0,n8 . The latter fact can be thought as a ho

confined in a potential wellU(rh) created by an electron in
the ground state and by the dielectric mismatch. This po
tial well is the electron-hole potential energy~17! averaged
over the wave function of an electron in the ground sta
There is no necessity to compute the electron-hole inte
tion energyVint(re ,rh) for each value ofre and later, when
averaging Eq.~17!, to averageVint(re ,rh) overre . It is much
simpler to average Eq.~18! over the wave function of an
electron in the ground state and then to solve it with resp
to the averaged potential energyU(rh). Unfortunately, there
is no such simplification for the calculation of the self-acti
energyVs-a(r ) and it is still necessary to solve the line
system of 218 051 equations 8149 times~calculation of the
self-action energy in tetrahedral QD’s turned out to be
most tedious one!.

The averaged potential energyU(rh) is represented by
solid curves in Figs. 4 and 5 for spherical and tetrahed
CdS QD’s in H2O correspondingly. Three solid curves

FIG. 4. Coulomb potential energy of the electron-hole syst
for a spherical QD averaged over the wave function of an elec
in the ground state. Solid curve denotes the sum of the Coulo
energy of the electron-hole interaction accounting for the dielec
mismatch between the QD and the surrounding media and of e
tron and hole self-action energies. Dashed curve denotes the
Coulomb energy with the dielectric constant of the QD~vertical
dashed line indicates the confinement potential energy!.

FIG. 5. The same as in Fig. 4, but for a tetrahedral QD. Th
dashed and three solid curves indicate three different direct
from the center of the tetrahedron: to the center of the face, to
middle of the edge, and to the vertex~from left to right!.
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Fig. 5 show the potential energy profile along three m
directions of a tetrahedron. Dashed curves in Figs. 4 an
give the averaged potential energyU(rh) in the absence of
the dielectric mismatch at the QD boundary, namely, wh
«85«. It is seen that even in our case where«/«8;3, the
potential energyU(rh) does not differ significantly from the
case«85« ~the reasons of such behavior have been in
cated at the end of Sec. II B 1 and discussed in Ref. 48!. As
also seen from the figures, the dielectric mismatch eff
diminishes the effective size of QD’s. Comparing Figs. 4 a
5 one can see that due to the complicate shape of the
boundary, the aforementioned diminishing is more p
nounced in tetrahedral QD’s. This fact should have a stro
effect on the electron-hole pair states in tetrahedral QD’s

Exciton states and their oscillator strengths for spher
and tetrahedral QD’s have been calculated according to
II C. For spherical QD’s, as far as we are concerned w
only spherically symmetric electron ground state and the
eraged potentialU(rh) is also spherically symmetric, excito
states have the same set of quantum numbers as hole s
Analogously, because electron ground state and the aver
potential U(rh) are tetrahedrally symmetric in tetrahedr
QD’s, the sets of quantum numbers in such QD’s are
same for hole and exciton states. To obtain exciton state
tetrahedral QD’s, we have used 86 coefficientsB0,n in the
sum~33!, i.e., all calculated hole states have been taken
account.

In Figs. 6~a! and 6~b!, exciton energy levels are shown a
a function of the QD size for spherical and tetrahedral QD
correspondingly. The exciton energy is counted from
lowest exciton state containing a fully symmetrical comp
nent. The dependence of the reference energies for
QD’s on the QD size is given in insets~here, as well as in
inserts to Figs. 3, 7, and 8, coefficients in the analytical
pressions are fitted using the least squares method!. Different
types of curves in Figs. 6~a! and 6~b! correspond to the sam
types of curves in Figs. 3~a! and 3~b!. In Figs. 6~c! and 6~d!,
nonzero oscillator strengths for exciton states in spher
and tetrahedral QD’s respectively are depicted as a func
of QD size. Corresponding energy levels are represente
Figs. 6~a! and 6~b! with thick curves.

Exciton energy levels in spherical and tetrahedral QD
are resembling to a considerable degree. For instance, e
ton ground states 14 in tetrahedral QD’s with anya and 1S3/2
in spherical QD’s withR.1.35 nm have a fully symmetri-
cal component. Another similar feature is the presence o
exciton level (1S1/2 for spherical QD’s and 12 for tetrahedral
QD’s! equidistant from the exciton ground state for any Q
size. The aforementioned pair of energy levels as well
ground state energy levels in both QD’s have also a sim
dependence of their oscillator strengths on the QD size.
above facts allow one to conclude that the self-action pot
tial energy diminishes the effective size of the tetrahedron
such way, that it looks similar to a tetrahedrally deform
sphere. In fact, the distance between three vertical das
lines in Fig. 5~real boundaries of the tetrahedron! is larger
than the distance between three almost vertical parts of s
lines, which show an effective QD size.

Hole energy levels in Figs. 3~a! and 3~b! can be thought
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FIG. 6. Exciton energy levels
~upper panels! and oscillator
strengths of some exciton state
~lower panels! for spherical@pan-
els ~a! and ~c!# and tetrahedral
@panels ~b! and ~d!# QD’s as a
function of their dimensions.
Thick curves in panels~a! and~b!
represent exciton states with non
zero oscillator strengths shown i
panels ~c! and ~d!, respectively.
Different types of curves in panel
~a! and ~b! originate from the
same types of curves that repre
sent hole states in Figs. 3~a! and
3~b!, correspondingly. In the in-
serts,Eg is the bulk CdS gap en-
ergy andEe0 is the quantum con-
finement electron ground stat
energy.
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as electron-hole pair levels without the dielectric confin
ment contribution if the bulk CdS gap and the electr
ground state energies are considered added to the hole r
ence energy. Therefore, comparing Figs. 3 and 6, one
arrive at the following conclusions about the influence of
Coulomb potential energy of the electron-hole system on
exciton spectra in spherical and tetrahedral QD’s:~i! in
spherical QD’s, the relative position of levels changes; i
also seen that optically active exciton states become ener
cally more favorable than optically inactive ones,~ii ! in tet-
rahedral QD’s, electron-hole pair states mix essentially w
forming exciton states which in their turn tend to reprodu
the picture of exciton states in spherical QD’s,~iii ! in both
QD’s, a regularity is observed that the exciton ground st

FIG. 7. Binding energy of the exciton ground state in a spher
QD calculated using the Coulomb potential energy accounting
the dielectric mismatch between the QD and the surrounding m
as well as for the self-action energy of an electron and a hole~dash-
dotted line! and using the bulk Coulomb potential energy with t
dielectric constant of the QD~dashed line!. The difference between
the quantum confinement gap energy and the exciton gap ener
plotted with the solid curve. The distance between the solid
dash-dotted curves shows the sum of dielectric confinement co
butions to electron and hole energies.
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has large oscillator strength which is practically unchang
with varying the QD size.

In the spherical six-band hole Hamiltonian used to cal
late hole states in spherical QD’s, the Luttinger parame
obey the conditiong25g3[g. However, using parameter
from Table I, one can obtain thatg25(L2M )/650.633 and
g35N/650.939 are different. Therefore, one can expect t
the difference betweeng2 andg3 will result in small correc-
tions to the hole and exciton spectra in spherical QD’s,
example, some degenerate in caseg25g3 levels can split
due to the reduction of the Hamiltonian symmetry fro
spherical to cubical. It has been checked, however, tha
substantial changes occurs in the degeneracy and relative
sition of lowest hole levels when the caseg2Þg3 is consid-
ered. On these grounds one can conclude that all similar
and distinctions revealed in the spectra of spherical and
rahedral QD’s are not connected with the accepted appr
mation to calculate hole states, but are ruled by the
shape.

We have specially considered the influence of the diel
tric mismatch at the QD boundary on the binding energy
the exciton ground state in spherical and tetrahedral QD
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FIG. 8. The same as in Fig. 7, but for a tetrahedral QD.
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V. A. FONOBEROV, E. P. POKATILOV, AND A. A. BALANDIN PHYSICAL REVIEW B66, 085310 ~2002!
Using Eq.~17!, Eq. ~27! can be rewritten in the form

Ĥexc5@Ĥe~re!1Vs-a~re!#1@Ĥ6~rh!1Vs-a~rh!#

1Vint~re ,rh!. ~36!

The definition of the exciton binding energy in QD’s isEb
5Ee1Eh2Eexc, where the electron~hole! energyEe (Eh)
is the eigenenergy of the Hamiltonian in the first~second!
parentheses in the right-hand side of Eq.~36! ~see, for ex-
ample, Ref. 39!. This definition of the exciton binding energ
includes the self-image effects in the single particle energ
Alternatively, the exciton binding energy can be defined
the difference between the single particle energies with
the self-image effects and the exciton energy. Another d
nition will be just a different way of partitioning the excito
energy. As previously discussed, the electron~hole! energies
can be written asEe(h)5Ee(h)

QC 1DEe(h)
DC . For spherical and

tetrahedral QD’s,Ee
QC , Eh

QC , andEexc have been represente
in Table II, Fig. 3, and Fig. 6 respectively. Since the calc
lation of DEe(h)

DC is straightforward, we restrict ourselves wi
the description of the main results. When energies are m
sured in meV and dimensions are in nm, we have in spher
QD’s: DEe

DC5326.7/R for the electron ground state energ
andDEh

DC5308.5/R for the hole ground state energy and
tetrahedral QD’s:DEe

DC5476.7/a and DEh
DC5487.3/a for

the electron and hole ground states energies, corresp
ingly. It is interesting to note, that the picture of the lowe
hole energy levels in their self-action potential resemble F
3~a! for spherical QD’s and Fig. 6~b! for tetrahedral QD’s.
This fact shows that the main reason of mixing the electr
hole pair levels from Fig. 3 into the exciton levels form Fi
6 is the electron-hole interaction energy for spherical Q
and the hole self-action energy for tetrahedral QD’s.

The exciton binding energy in spherical and tetrahed
QD’s with the dielectric mismatch is shown with dash-dott
lines in Figs. 7 and 8, respectively. Solid lines in these fi
ures represent the difference between the quantum con
ment gap energy (Ee

QC1Eh
QC) and the exciton gap energ

(Eexc) accounting for the dielectric mismatch~the potential
plotted in Figs. 4 and 5 with solid lines has been used! and
dashed lines represent the binding energy when the diele
constant of the surrounding medium is equal to the dielec
constant of the QD~the potential plotted in Figs. 4 and
with dashed lines has been used!. It is seen from Figs. 7 and
8 that the dielectric mismatch at the CdS/H2O boundary
leads to the enhancement of the exciton binding energ
both spherical and tetrahedral QD’s by a factor of 2. T
exciton binding energy consists of the direct Coulomb
ergy that does not depend on«8 ~dashed curves! and the
polarization contribution that depends strongly on«8 ~the
difference between dash-dotted and dashed curves!. The po-
larization contribution to the exciton binding energy tends
cancel the dielectric confinement contributions to the el
tron and hole energies, what results in a weak dependenc
the exciton gap energy on the dielectric environment.48

The exciton ground state energies as a function of
size for spherical and tetrahedral CdS QD’s calculated in
present work are compared in Fig. 9 with the results obtai
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in recent theoretical and experimental studies. Solid a
dashed curves in Fig. 9 represent our results for tetrahe
and spherical QD’s, respectively. As seen, the exciton gro
state energyEexc0 for a relatively large tetrahedral QD (R
.3.5 nm) is close toEexc0 for the spherical QD inscribed in
the corresponding tetrahedron (R5a/A3). This fact can be
explained if we note that the Coulomb potential energy of
electron-hole system in the central region of a relativ
large tetrahedral QD~i.e. at the bottom of the potential well!
almost coincides with this potential energy in the central
gion of the spherical QD inscribed in the tetrahedron~com-
pare Figs. 5 and 4!. The exciton ground state energyEexc0 in
a relatively small tetrahedral QD is less thanEexc0 in the
spherical QD inscribed in the tetrahedron, because elec
and hole densities penetrate substantially in the direction
edges and vertices of small tetrahedral QD’s.

The dash-dotted curve in Fig. 9 represents the exc
ground state energy for spherical CdS QD’s withR
,2.5 nm calculated in Ref. 51 using the tight-binding~TB!
method for single particle electron and hole states and
potential energy of the electron-hole interaction for a bu
CdS crystal. For such small QD’s, the TB method sho
give more accurate single particle electron and hole st
than thek•p method used in this paper. However, as we ha
shown, the dielectric mismatch at the CdS boundary a
cannot be neglected. The applicability of continuum mac
scopic electrostatics for very small structures with sizes
only few unit cells has been proven in Refs. 52 and 53 tak
into account the spatial variation of the dielectric consta
Figures 4 and 5 show that the dielectric mismatch at
CdS/H2O boundary should increase the exciton ground s
energyEexc0. This can explain the fact that the values
Eexc0 calculated in Ref. 51 are lower than the experimen
values of Ref. 21~boxes in Fig. 9!.

FIG. 9. Exciton ground state energy as a function of the radiuR
for spherical CdS QD’s and as a function of the dimensiona ~see
Fig. 1! for tetrahedral CdS QD’s. For a given energy,R is the radius
of a sphere inscribed in the tetrahedron with dimensiona. Boxes
~Ref. 21!, triangles~Ref. 49!, and crosses~Ref. 50! are the experi-
mental points; dash-dotted curve is the result of a tight-bind
calculation~Ref. 51!; dotted curve is the result of ak•p calculation
for wurtzite nanocrystals~Ref. 45!. Solid and dashed curves are th
theoretical results of the present paper for tetrahedral and sphe
QD’s correspondingly.
0-10
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EXCITON STATES AND OPTICAL TRANSITIONS IN . . . PHYSICAL REVIEW B66, 085310 ~2002!
Triangles in Fig. 9 represent the experimental points fr
Ref. 49 for CdS QD’s with cubic crystal lattice. In the latt
reference, the theoretical energies of exciton states calcu
as in Ref. 54 are also presented. Despite the fact that Re
takes into account only one hole band, an excellent ag
ment with the experiment has been found for the exci
ground state. The one-band hole mass from Ref. 54 ismh

50.8m0. Values of heavy and light hole masses within t
six-band model considered in the present paper are liste
Table I. In the region 2.5 nm,R,3.5 nm, the six-band
model gives the hole ground state energy, which is 1.5 tim
larger in absolute value than the corresponding result of
one-band estimation of Ref. 54. Since our accurate results
the exciton ground state energy are slightly larger than
experimental points of Ref. 49, the above better agreem
with the calculation of Ref. 54 must be a result of the sel
tion of the one-band hole mass.

Noticeable scattering of the experimental points from R
21 is probably due to the uncertainties in the determina
of the effective radius of tetrahedron-shaped QD’s. The s
tering can be also due to the fact that while the crystal str
ture for the smallest QD’s was determined to be cubic a
for the largest QD’s it was found to be hexagonal~wurtzite!,
the crystal structure of other samples seemed to be ne
cubic nor hexagonal. Crosses in Fig. 9 show the experim
tal points from Ref. 50 for wurtzite CdS QD’s. The excito
ground state energy in wurtzite QD’s is substantially high
than this energy in QD’s with cubic crystal lattice. The dott
curve in Fig. 9 shows the result of the six-bandk•p
calculation45 for wurtzite QD’s by Li and Xia who did not
take into account the dielectric mismatch.

Summarizing the results presented in Fig. 9, we can s
that our exciton ground state energy in both spherical
tetrahedral QD’s is close to the experimental data of Refs
and 49 for CdS QD’s with cubic crystal lattice. Comparin
the theoretical results of different authors, it is seen that
TB calculation gives lower exciton ground state energyEexc0
and thek•p calculation for wurtzite QD’s gives higherEexc0
than ourk•p results that also take into account the dielect
mismatch at the QD boundary. Unlike other papers, our
citon states depend on the dielectric constant of the exte
medium, therefore, taking into account the exact dielec
environment of each particular experiment should bring
results closer to the corresponding experimental points.

The Stokes shift in CdS QD’s has been observed in R
49. At the same time, our calculation gives optically act
exciton ground state. The situation here is similar to tha
case of spherical InAs and CdTe QD’s where the Stokes s
has been explained55,56 employing the electron-hole spin
exchange interaction. This interaction splits the optically
tive exciton ground state into few states, the lowest of wh
is optically passive.

Calculated in the present work, exciton ground state
ergy as a function of QD size is only an approximation
QD’s with R,1.5 nm since the penetration of the electr
density into the exterior medium becomes substantial
such small QD’s and, consequently, the hard wall bound
conditions for the electron wave function cannot work. Ho
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ever, taking into account the finiteness of the potential bar
should lead to a better agreement with the experiment.

The k•p model is an extrapolation for the smallest QD
investigated in this paper, because the conception of the
velope wave function becomes dubious when the size
QD’s is only few unit cells. However, the results obtain
within the k•p model for such small QD’s turn out to b
close to the correct results. For example, the multibandk•p
model can successfully describe35,36 the distribution of elec-
tron and hole densities in QDQW’s with only one-monolay
thick quantum well. Moreover, it has been found in Ref.
that the eight-bandk•p model successfully describes the e
perimentally observed level structure and relative transit
intensities in spherical InAs QD’s down to about 1.2 nm
radius. Thus, we can conclude that the exciton states
optical transitions obtained in the present paper for spher
and tetrahedral QD’s will not change noticeably if one us
another approach, such as TB. One can also say that in o
to describe electron and hole states near the edges and
ces in the tetrahedral QD’s, it is necessary to take into
count highk states that are beyond the limits of thek•p
model. On the other hand, as seen from Fig. 2 and from
fact that electron and hole ground states in large tetrahe
QD’s almost coincide with those states in the inscribed in
tetrahedron sphere, electron and hole densities near the e
and vertices of the tetrahedron are extremely small. Anot
theory should not give any substantial corrections in this c
as well.

One can see from Fig. 9, that the QD shape~spherical or
tetrahedral! does not have any principal influence on the e
citon ground state. In this connection it is interesting to co
sider next exciton states. Exciton energies of allowed opt
transitions in spherical and tetrahedral CdS QD’s coun
from the exciton ground state energyEexc0 are plotted versus
Eexc0 in Fig. 10. Relative oscillator strengths of the optic
transitions are represented by the size of the correspon
symbols. Due to the high symmetry of spherical QD’s, t
number of optically active exciton states is small~there are
only four such states in Fig. 10!. For tetrahedral QD’s, in
addition to the four states with large oscillator strengt
there are a lot of states with very small oscillator strength
is seen that first two optically active exciton sates are sim
in QD’s of both shapes. The third and fourth exciton sta
with large oscillator strength are higher in energy for sphe
cal QD’s than they are for tetrahedral QD’s. For small QD
this difference in energies is of order of hundreds
millielectron-volts. This fact shows that optical transition
involving higher exciton states are different for spherical a
tetrahedral QD’s. Thus, we can conclude that having an
perimental optical spectrum of a single QD and knowing
approximate dimensions of the QD, it is possible to estim
the shape of the QD. The knowledge of the QD shape in
turn enables a thorough theoretical investigation of other
properties in the direction of their practical applications.

IV. CONCLUSIONS

A theory of electron, hole, and exciton states in spheri
and tetrahedral CdS QD’s has been developed. Exciton
0-11
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ergy spectra have been calculated using the Coulomb po
tial energy of the electron-hole system accounting for
dielectric mismatch between the QD and the surround
media as well as for the self-action energy of an electron
a hole. One-band electron and six-band hole wave funct
and corresponding energy levels as well as the Coulomb
tential energy in spherical QD’s have been found anal
cally. For tetrahedral QD’s, one-band electron and three-b
hole states (D50) as well as the Coulomb potential energ
have been found numerically using the finite differen
method. Six-band hole states (DÞ0) have been computed b
expanding six-band wave functions in terms of three-ba
ones. Exciton wave functions in both QD’s have been
panded in terms of wave functions of electron-hole p
states. Oscillator strengths of electron-hole pair and exc
energy levels have been calculated as a function of the
size.

It has been shown that the aforementioned potential
ergy of the electron-hole system, averaged over the w

FIG. 10. Exciton energies of allowed optical transitions
spherical~gray disks! and tetrahedral~circles! CdS QD’s counted
from the exciton ground state energyEexc0 and plotted versusEexc0.
Relative oscillator strengths of the optical transitions are rep
sented by the size of gray disks for spherical QD’s and by the
of circles for tetrahedral QDs. The rightmost gray disks corresp
to a QD withR51.2 nm and the rightmost circles correspond to
QD with a51.7 nm. Each next~from right to left! gray disk or
circle represents the QD with a respective dimension (R or a) in-
creased by 0.1 nm. Highest excitonic transitions in the region
lowestEexc0 have not been calculated.
:/
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function of an electron in the ground state, in a tetrahed
QD forms a 3D potential well with the profile of a truncate
tetrahedron with smoothed edges, i.e., a tetrahedrally
formed sphere. This effect can be explained by the incre
of the self-action energy near the intersections of two
three face plains of the tetrahedron.

The lowest electron-hole pair energy is found to be op
cally passive in the spherical QD. This fact is known to le
to some difficulties in the theoretical interpretation of ob
served photoluminescence spectra. In contrast to sphe
QD’s, lowest electron-hole pair energies in tetrahedral QD
are optically active. The Coulomb potential energy infl
ences the exciton spectrum in spherical QD’s in such w
that relative position of electron-hole pair levels changes a
lowest optically active exciton states become energetica
more favorable than optically inactive ones. Unlike electro
hole pair levels, exciton energy levels in spherical and tet
hedral QD’s have many similar features. For example, ex
ton ground states in a tetrahedral QD of any size and in
spherical QD of almost any radii are optically active. Th
ground states in both QD’s have large oscillator streng
which are practically unchanged with varying the QD size

The dielectric mismatch at the CdS/H2O boundary leads
to the enhancement of the exciton binding energy by a fac
of two in both spherical and tetrahedral QD’s. Calculat
exciton ground state energies for spherical and tetrahe
CdS QD’s have been compared with the results obtained
recent theoretical and experimental studies. A satisfact
agreement with the experimental data has been found
clear distinction in the optical properties of tetrahedral a
spherical QD’s has been revealed. In conclusion, we est
lished that taking into account the real shape of the quant
dots and Coulomb potential energy with the dielectric m
match at the QD boundary are essential for theoretical in
pretation of exciton optical spectra.
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