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We present a theoretical investigation of electron-hole and exciton energy spectra as well as oscillator
strengths of optical transitions in colloidal CdS quantum d@®'s) with spherical and tetrahedral shape. The
Coulomb potential energy of the electron-hole system is treated taking into account the dielectric mismatch at
the QD boundaries. Calculation of electron-hole energy spectrum and Coulomb potential energy in tetrahedral
QDr’s is carried out using the finite difference method. It is shown that the bulk Coulomb potential energy with
the dielectric constant of QD leads to lower exciton energy levels as compared to the Coulomb potential, which
includes electron-hole interaction and self-action energies. The Coulomb potential changes the electron-hole
pair energies without dielectric confinement contributions in such a way that the exciton ground state becomes
active for optical transitions in dipole approximation for both tetrahedral and spherical QD’s while the lowest
electron-hole pair energy level is active for tetrahedral and passive for spherical QD’s. The exciton binding
energy in both types of QD’s is enhanced by a factor of 2 in the presence of the dielectric mismatch. It is
proven that the inclusion of the real QD shape and dielectric mismatch is important not only for the quanti-
tative analysis but also for the qualitative description of optical properties of colloidal CdS QD’s.
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I. INTRODUCTION Some of the most effective methods of investigation of
carrier energy spectra in QD’s are optical ones. They include
One of the most important features of low-dimensionalabsorption of light, photoluminescence, photoluminescence
semiconductor structures is the confinement driven quantizaxcitation, Raman scattering, éc:X°At the same time, the
tion of energy spectrum of charge carriers. The effect ofpresent-day technology does not allow the synthesis of ar-
quantum confinement becomes stronger as the confinemepiys of QD’s with identical shape, size, and orientation.
dimension increases and the size of a structure decreasgherefore, experimentally obtained characteristics of QD’s
While bulk materials have a three-dimensional energy bandre averaged and include statistical properties of the en-
structure, one-dimensional confinement of quantum wellgempie. |t should be mentioned, however, that there are spe-

leads to a two-dimensional energy band structure near eaghiy| methods that allow for observation of optical character-

guantized energy level in the well and two-dimensional CON<stics of single QD'€°-22The crystal structure and shape of

fl?emgn;dof t(?uatntrumn W':es Ier?ds t?]tiazl %ne;]dl:ner}st)r}ailne;ﬂg[ys depends mainly on the growth conditions. For instance,
€rgy band structure near each quantized energy ieve . colloidal CdSe QD’s with hexagonal crystallinity, as well as
wire. At the same time, three-dimensional confinement in

quantum dotdQD’s) leads to a discretéatomiclike) lower CdSe, Cd3Sq_, PbS, and GPZE_SZe QD's grown in glasses,
part of the energy spectrum. When the effective dimensionQ‘”‘Ve nearly spherlca,l s_hab%l. ' 5Elegtrochem|call)_/ se_lf—
of a QD are less than the bulk exciton Bohr radius, the ex@Sseémbled %%S QD's in the AD; matrix have quasicylin-
citon energy spectrum is primarily defined by the confine-dr'calgszgapé-' InAs/GaAs QDs are pyramidal with square
ment, while the Coulomb interaction plays a minor role. base’ _' 30and GaN/AIN QD's are truncated hexagonal
In order to predict novel physical phenomena and Suggegyramms. Alkali-haloid nanocrystals in an alkali-haloid
new technical applications, researchers investigate manifegatrix usually form rectangular prisms.
tations of quantum-size effects in nanostructures both theo- The key problem in the investigation of optical properties
retically and experimental> Not long ago, extremely of QD's is finding the energy spectrum of confined charge
high-quality superlattices, multilayers, and monolayer semicarriers and the corresponding wave functions. The Coulomb
conductor structures have been fabricat&ergy spectra of interaction of an electron and a hole in the exciton influences
charge carriers and excitons in quantum wires with rectanguthe energy of optical absorption and photoluminescence and
lar, T-shaped, V-groove, and other cross sections have be@plits the degenerate electron-hole pair levels. In parabolic,
investigated'~° Recently, a significant attention has beenone-band, and infinite barrier approximations for structures
attracted to QD’s due to their promise for applications aswith simple geometrical shapéplanar, cylindrical, spheri-
basic elements for semiconductor lasers, nonlinear trangal), the energy spectrum can be found from general expres-
formers of light, computer memory, and elements of quansion E,~ «?/R?, wherea,(n=1,2, ...) arenumbers close
tum logic gateg!13 to a corresponding real numbar R is a characteristic di-
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mension of the system, e.g., thickness of the layer, radius afonfinement electron and hole states in QD’s. The index QC
the cylinder, or radius of the sphere. Nonparabolicity of en-will be omitted. To calculate the exciton states, the dielectric
ergy bands, degeneracy of valence bands, and finiteness odnfinement contribution to the electron and hole energies
potential barriers strongly complicate the structure of thewill be taken into account in Secs. Il B and Il C as a part of
size-quantized energy spectrum. In this case, the detailed stihe Coulomb potential energy of the electron-hole system.
lution of the Schrdinger equation is needed even for spheri-

cal QD's. Nevertheless, a spherically symmetric QD, having 1. Spherical QD

the simplest shape, is commonly used in the so-called spheri- The one-band effective-mass Satfirmer equation for the

cal approximation for description of electronic and Opticalenvelope wave function of an electron in a QD has the form
properties of QD’s. In particular, CdS/HgS/CdS quantum-dot

quantum wells(QDQW's), growr?>3 in an aqueous solu- 72
tion, are consideréd=>® spherical. There are several stages -
in the QDQW growth. First, the core of the future
structure—a CdS tetrahedron with cubic crystal lattice iswhere m, is the electron effective mass anhdl(r) is the
formed. After subsequent growing of the HgS and CdSelectron confinement potential energy, which is equal to zero
monolayers onto the surface of the core, the shape of thi@side the QD and infinity outside the QB and®(r) are
nanocrystal becomes a truncated tetrahedron, what is, ithe quantum confinement electron eigenenergy and the cor-
deed, closer to spherical shape than to tetrahedral one. Ther@sponding envelope wave function. The solution of &g.
fore, for simplicity, in all previous theoretical calculations for a spherical QD with radiuR is well known and can be
aimed to interpret the optical properties of QDQW's, thewritten as
shape of the nanocrystal was considered spherical.

The dielectric mismatch at the interfaces of low-
dimensional structures is also known to have a considerable

effect on the exciton energies. The dielectric enhancement of

excitons has been demonstrated in quantum Weéad in whereA, , is.a normalization coefficient; (x) ‘? qspherical
quantum wires® A similar effect is expected in QD¥® Bessel functiong, ,, is thenth zero of the function,(x), and

Not only multiple QDQW's, but also single CdS QD’s Y m(6,¢) is the spherical harmonic. In E€), n is radial

have been studied experiment&iy?2Thus, it is important to  @nd!,m are angular quantum numbers. Due to the spherical
investigate electron, hole, and exciton spectra as well as oY MMetry, the eigenenergy

qu)e(r)+Ue(r)q)e(r):Eeq)e(r)v (1)

2mg

q)gm'n(r):Ath(a|yn%)Y|'m(9,¢), @

tical properties of colloidal CdS nanocrystals taking into ac- 72 oy )\ 2
count both shapétetrahedral or spheric‘Q) and dielectric E'e’“: (ﬁ) 3
mismatch effects. The comparison of the theoretical results 2me| R

with experiment will help in interpretation of the experimen- js (2| +1)-fold degenerate with respect to the angular mo-
tal data. Since experimental data is available for CdS QD'$pentum projectiom. Common notationaS, nP, nD, ...,

with diameters from one to ten nanometers it is also interestyre ysed to describe eigenstat®swith angular momenta

ing to compare the vglidity of different theoretical m'ethodszoil,z ..., respectively.
for description of exciton spectra in a range of QD sizes. The six-band Hamiltonian for a hole in a spherical QD is
given in Ref. 40 in the spherical approximation. The solution
Il. THEORY of the corresponding Schidinger equation can be written in

A Electron and hole states the following analytical form:

We consider colloidal CdS QD’s with cubic crystal lattice. sz 3

Since the band gap of bulk CdS is wi@25 e\), we study PPN = > Y QYMPN(r)iOmmE=2y,
electron and hole states of spherical and tetrahedral QD’s by I=1z p=d @
using separate one-band electron and six-band hole effective-

mass Hamiltonians. The band gap of the exterior medium—whereu; , are the Bloch functions of the valence b&hand
H,O is about 8 eV, therefore potential barriers for both elec-®}"P"(r) are the envelope functions given by

trons and holes in CdS QD’s with diameters larger than 2 nm

are so high that they can safely be considered infinite. Thus, impn j“, ' im Qo
the infinite barrier approximation is used in this paper. Py (r)ZI_ZJ x:2—| Couin RET(r)Y,(6,0).
In the presence of the dielectric mismatch, the electron ==l (5)

(hole) energy E¢r)) can be separated into a quantum con- _

finement energyEe(ﬁ)), which describes the electrghole) Here, C‘J’ﬂm are the Clebsch-Gordan coefficients and
confinement energy in the absence of the dielectric misR;""(r) are the radial envelope functions, which can be
match, and dielectric confinement contributioAE(g’(Ch) ,  found as a linear combination of few functiongx) ori(x)
which describes the self-action energy of an electituole) [i;(x) is a spherical Bessel function of the second kifithe

in the electrostatic potential generated by its own imageprime near the first sum in Eg¢5) shows that only values of
charge due to the dielectric constant discontinuity at the QD satisfying equality ¢ 1)) ~'"¥?=p should be taken, where
boundary. Further in Sec. Il A, we consider only quantump= =1 is the conserved parity. Another quantum numbers in
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Qg
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D5 HM(r)= L (7)

3/2
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where v is the number of the level with degeneraky u
=1,...\ counts degenerate states, am const. Using
Egs.(6) and(7) one can find the eigenstates for a tetrahedral
QD with arbitrary size knowing the solution of E¢l) for
a:ao.

The six-band Hamiltonian for a hole in a QD with arbi-
trary shape and with cubic crystal lattice can be written in the
Bloch function basis

Us={IXT).[YT).[Z1).IX1).[Y1).Z1)} (8
agt

. [Hs O}
Hez( - >+Hso- 9)
FIG. 1. Orientation and dimensions of a tetrahedral Q3. the
distance from the center of the tetrahedron to the middle of its edge. . .
Hereafter we take the negative hole energy as positive.
The operatoH in the first term of Eq(9) is the three-band

Eq. (4) are ] ,m (angma)‘ andn (radia). The eigenenergy hole Hamiltonian in the Bloch function basis

ELjp'”, which can be found applying the boundary condition
WL™PN(r)| _g=0 to the wave functiori4), is (2j + 1)-fold uz={|X),|Y),|Z)}. (10
degenerate with respect to the projectiorof the total an-

gular momentunj. Common notations1Q; are used to de- As seen from Eqs(9)—(13) in case of zero spin-orbit cou-

pling (A=0), the eigenstates of the Hamiltonié®) are the

scribe hole eigenstates, where symRQotS,P,D, . .., cor- _ RN
responds to the lowest value of momentuin Eq. (5), i.e.,  twofold spin degenerate states of the Hamiltonkég The
min(j+p/2,|j—3p/2|). latter Hamiltonian has the form

2. Tetrahedral QD 1 Lﬁi”L M f)ix Nbxby Nbxbz

To obtain electron states in the tetrahedral QD, the Schro H3:2_mo N PPy Lpj+MpZ, Npyp; ,
dinger equatior(1) is numerically solved using a finite dif- P oo ~2 n2
ference method. Let us choose the coordinate system for the NP<P: NPyP: Lzt Mpi, (11)
considered tetrahedral QD as shown in Fig. 1. A uniform grid
with step length 2/N is introduced in the cube with edg@2 where p=—i#%V and p?,=p?—p? (i=x,y,z). Luttinger
(dashed cube in Fig.)kircumscribed about the tetrahedron. effective-mass parametelrs M, andN from Eq.(11) can be
The grid has K—1) nodes inside the cube, which is split determined by fitting the energy bands near the valence band
into N* cubic cells. To satisfy the hard wall boundary condi- top with those calculated by the empirical pseudopotential
tions, wave functions are set to zero at the surface and outnethod as in Ref. 43. The second term in E9). is the
side the tetrahedron. Therefore, it is necessary to consid&pin-orbit Hamiltonian
only N'=(N—1)[(N—1)?+2]/3 nodes inside the tetrahe-

dron. The eigenvalues and eigenvectors of the resulting X ASY AZ
XN Hamiltonian matrix are computed using a modified Hso= N2t o | (12)
Davidson-Liu algorithnf? The calculation does not take ad- Hso' Hso
vantage of the tetrahedral symmetry of the problem. It isynere
known from the group theory, that the degeneraoyf elec-
tron eigenenergies in a tetrahedral QD can be onefold, two- 1 i 0 O 0 -1
fold, or threefold. As seen from Edq1), the dependence of ~ay A 1 0l ¢ 2 A 0 0
the energy levels on the QD dimensiarhas a form similar HSO_§ ! *HSO_§ aE
to Eq.(3) 0 0 1 1 —-i O
(13
. ay) 2 . andA is the spi'n—orbiy split.ting energy. .
Ey'= ’ EaE)V (6) Since the spin-orbit splitting energy in CdS is small (

=70 meV), it is convenient to obtain the eigenstates of the
Hamiltonian (9) in the following way. First, eigenenergies

and, as a consequence of the normalization, correspondirfega, and eigenfunction¥’ 3, of the three-band Hamiltonian
envelope wave functions depend aras (11) are numerically computed for a tetrahedral QD with a
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certain dimensiora=a, using the finite difference method 1 5
described above for the calculation of electron states. Simi- Vsa(r)=—5lim [Vind(r,r") = Vinr,r')1, (19
larly to electron energy levels, three-band hole energy levels r—r

can be one fold, two fold, or three fold degenerate. Eigen
states for a QD with an arbitrary dimensiarcan be found
using the size dependencies given by E@s.and (7) for
electron states. Second, eigenenerdigg and eigenfunc-
tions W, of the six-band Hamiltoniar9) are computed by
expanding six-band wave functions in terms of three-ban

Wherevi'?n(re,rh) is the solution of the Poisson equatidd)

in the left-hand side of which functioa(r},) is replaced with
€(re), i.e., it is the local bulk solution of Eq18). Further,
Eqg. (18) is addressed to QD’s with the dielectric constant
(?qual toe inside the QD and’ outside the QD.

wave functions as 1. Spherical QD
312 i i i
ay ag In the electrostatic case, the charge dengity.,ry) is
Vealr)= g) > An,a(a)‘l’g,ao(gr>|0>, (14 given by ;
n,o
where A, ,(a) are the expansion coefficients, the set of p(re,rn)=e8(re—rp), (20

guantum numbers of three-band states is denoted asdo . . .
is the spin of the missing electron. Considering the symmetnz'here a(r) Is the Dirac delta function. Therefore, the local

T ulk solution of Eq.(18) is
of the HamiltonianHg, it can be shown, that hole states are
either two fold or four fold degenerate. The notatiop, e?
whereN=2 or 4 is the degeneracy amd=1,2, .. ., is the VB (re,rp)=
ordinal number of a level with giveR, is used to label hole

energy levels. _ _ o _ Equation (18) can be solved almost analytically for a
The main benefit of using the described in the previougpherical QD. Since both electron and hole are confined in-

paragraph approach to obtain six-band hole states as a fungye the QD of radiuR, only solution forr,<R andr,
tion of QD size is that the computationally intensive calcu- g ig presented:

lation of eigenvalues and eigenvectors of the Hamiltonian

— . 21
477605(re)|re_rh| @)

matrix is performed only one time, i.e., for a certain QD size. (e—g') & Form
; ; e
While three-band envelope wave functiodg; of Vint(reyfh):Vﬁt(fe,fh)— dmegR |:Eo P|( rerh)
3
VL= D3iUs; 15 [+1 rer
3 21 3,43, ( ) > e'h 7 (22)
. , (I+1)e'+le | R?
can be chosen real valued, six-band envelope wave functions
Pg; of whereP|(x) is the Legendre polynomial of ordér Substi-
tution of Eq.(22) into Eq. (19) gives the self-action energy
0 for r<R:
Vo=, Dg;ug; (16
=1 2 N 2l
- _ Vv _e(e—¢') s l+1 r -
are essentially complex valued. Therefore, the direct calcu- sall)= 8meoeR % (14 1)s' +1s | R) (23

lation of six-band hole states would require dealing with a
6N X 6 complex matrix instead of 8 3N real matrix for  As seen from Eqs22) and(23) in the absence of the dielec-

three-band hole states. tric mismatch €' =¢), the electron and hole self-action en-
ergies are zero, and the electron-hole interaction energy takes
B. Potential energy of the electron-hole system its bulk value. Considering Eq17), one can notice that the

Coulomb potential energy of the electron-hole system foPa"t of Vin(re."n) given by the second term in the right-hand

a nanostructure with spatially modulated dielectric constangide Of Eq.(22) and the sumV4(re) +Vs4(rp) have oppo-
e(r) is site signs and, on average, close absolute values. This fact

greatly reduces the influence of the dielectric mismatch on
U(ro,fp)=Vin(Te,rn) +Vea(re)+Vea(ry). (170 the Coulomb potential energy of the electron-hole system,

making this energy close to its bulk value given b .
In Eq. (17), Viu(re,rp) is the electron-hole interaction en- g » g y &0

ergy; it can be found from the Poisson equation 2. Tetrahedral QD

e Among nonspherical QD’s, a partially analytical solution
Ve € Ve VinTe, ) =—p(re,rn), (18)  of Eq. (18) can be found for a cubic Qff. For an arbitrary
0 QD shape, in our case for tetrahedral one, B@) can be
wherep(rq,ry) is the charge density at the point of an  solved only numerically. The finite difference method on a
electron with the coordinate,. Second and third terms in composite grid is applied to solve the Poisson equati@n
the right-hand side of Eq17) are electron and hole self- the differential equatioif18) is transformed into a system of
action energies, respectively; they are defined as linear equations which is solved iteratively.

085310-4



EXCITON STATES AND OPTICAL TRANSITIONS IN . . . PHYSICAL REVIEW B56, 085310 (2002

The composite grid is constructed as follows. a uni-  spherical QD’s. The exciton Hamiltonian in the envelope
form grid with step lengthA/N’ is introduced in the cube function representation is written as
with edge A>2a [the dashed cube from Fig. 1 uniformly R A R
stretched by a factoA/(2a)]. The uniform grid has N’ Hexe=He(re) +Hg(rp) +U(re,rp), (27
+1)2 nodes, including those on the cube’s facéi$.A uni-
form grid with step length /N’ is introduced in the cube WhereH, Hg, andU are defined by Eqg1), (9), and(17),
with edge 2\ (the previous cube uniformly stretched by a correspondingly. Exciton states are eigenstates of the equa-
factor 2. The latter grid addsN’+1)3—(N’/2+1)% new tion
nodes to the former one, resulting in a composite grid with R
2(N’"+1)3—(N’/2+1)® nodesiii ) Step(ii) is repeated un- Hexc? exc™ Eexc¥ exc: (28)
til the composite grid with K’ +1)3+(K—1)[(N’+1)3
—(N’/2+1)%] nodes is constructed in the cube with edge
KA. After the appropriate boundary conditions are applied a
the facets of the final cubé&ven zero boundary conditions pk ae
work well if KA>2a), the number of remaining nodes, and (FeaTn)=(Soel 5(re) Po(rr), 29

consequently, the order of the resulting linear systetVis  wherek andn denote the sets of quantum numbers of one-
=(N’—1)%+(K—1)[(N'+1)°~(N'/2+1)*]. If one con-  phand electron and six-band hole states, respectivglis the
sidered the uniform grid with step lengtiVN" in the cube  electron spin(S| is the Bloch function with zero momentum,
with edgeK A, the corresponding order of the linear systemg, is the electron envelope function, afg is the hole
would be KN’ —1)%, what is approximatelK” times larger  wave function given by Eqs(16) and (8). As seen, the di-
than \'’. Due to the long-range character of the Coulombelectric confinement contribution is not included in the defi-
interaction, in order to find the exact Coulomb potential in-nition (29) of the electron-hole pair states.

side the QD, one has to consider the region about 10 times Qscillator strengths of the electron-hole pair states, aver-

larger than the QD dimension, i.&~10. The advantage of aged over the electron spin, can be calculated as
using the composite grid, as described here, is obvious.

Neglecting the electron-hole potential enetdyin Eq. (27),
{he solution of Eq(28) are electron-hole pair states

The charge density(r.,r,,) at the noden,, of an electron Kn K,ogin 2

at the noden, belonging to thekth level of the composite fe—'h"‘? S(re=rn)Pn¥ gy (re rp)dredry/ , (30)

grid can be written, within the finite difference method, as ¢

(k=1,...K) wherep,=—i#V, _is the hole momentum. Substituting Eqs.

N’ |3 (7) and(14), (15) into Egs.(29), (30) and taking into account
e(—) . Ng=ny, relations(oe|oy) = 8, -, and
p(Ng,Np) = kA (24)

0, Ne# Ny - (SIpilusj)=Ps,;, (i,j=xy,z;P=const (31

The electron-hole interaction enery,(ne,ny) is evaluated
using Eq.(18) with the charge densit{24) for each node,.
It is easy to prove, that the correct self-action energy on the

composite gride can be given by E49) in the form “E

one obtains

2

n ,,(a)f e, (r)<I>3a ,(r)dr‘
(32

Since the electron-hole overlap integrals in E§2) are
taken at a fixed value of QD dimensi@ a,, the depen-
dence of oscillator strengths om comes from the size-
dependent expansion coefficiests , of the hole wave func-
tion (14).

The exciton wave function can be expanded in terms of
wave functions of electron-hole pair stai@®) as

1
Vea(n)=— 2[V|nt(n n)— V (N, ml, (25

where the local bulk solutiok®(n,n) is found as described
below Eq.(19).

As seen from Eq917)—(19), the dependence of the Cou-
lomb potential energy on the QD dimensiarhas the form

q Qo

_re,grh .

a (26)

Ua(re,rn)=

8o

z) Vs
This fact, again, allows one to obtain the Coulomb potential
energy for any value of dimensiaanby computing a single o ) o
casea=ay. Substituting Eq(33) into Eq. (28) and taking into account
Eq. (27) one can rewrite equatiof28) in the following ma-
trix representation:

a' ko’
e;c—E BinWore". (33

C. Exciton states and oscillator strengths

Electron and hole states and electron-hole potential en- K on
ergy described above are used here to find exciton states and % Hin' Bkn=EexdBk' n'» (34
their oscillator strengths. For conciseness, we consider only '
tetrahedral QD’s. An analogous approach can be applied favhere the Hamiltonian matrix has the form
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TABLE I. Parameters of cubic Cd&,: band gapA: spin-orbit
splitting; m,: effective electron mass;: dielectric constantt., M,
andN: Luttinger parametersy,, y: Luttinger parameters andy, ,

m,y: light and heavy hole masses in the spherical approximation

(Ref. 41 (&' - dielectric constant of D).

Eq, eV A, eV e e’
25(Ref. 39  0.07(Ref. 45 55(Ref. 39 1.78(Ref. 39
me, My L M N

0.2 (Ref. 39 4.8632 1.0642 5.6332

Y1 Y My, Mo Mpp, Mo
2.330° 0.817° 0.252¢ 1.434°

#As in Ref. 43, parameters, M, andN have been determined by

fitting the energy bands near the valence band top with those cal-

culated by the empirical pseudopotential methifudm factors of

cubic CdS have been taken from Refs. 46 and 47; lattice constan

of cubic CdS is 0.582 nniRef. 33; reciprocal lattice vector has
been restricted tG?<28].
bParameters/l andy have been calculated from M, andN using
relationsy,;=(L+2M)/3 andy=(2(L—M)+3N)/30.
‘Parameters;,, andmy,;, have been calculated fromy, andy using
relationsmy,=mg/(y,+27y) and my,=mg/(y,—27v). Values of
these parameters are close to hole masses for cubic CdS studied
Ref. 40.

HE = (ES+ED) Sy S+ Ul A" (39
andU',ﬁ:,;”' is the matrix of the electron-hole potential energy
U constructed on the basis functiods’’e". The form of
the Hamiltonian matrix for any value of dimensiarcan be
obtained from Eq(35) for a=a, if one multiplies the first
term in the right-hand side of E(5) by (ag/a)? [according

to Eq.(6)], multiplies the second term byg/a) [according

to Eq. (26)], and replaces the expansion coefficients
A, ,(ap), defining hole wave functionél4), by A, ,(a).

The oscillator strengtli,. for an exciton leveim is cal-
culated using Eq(30) Where\I";jge;” is replaced byW_ 7
given by Eq.(33). At the same time, Eq32) remains valid
if one replaces\), _(a) by =By (a)A;, ,(a) and sums the
expression under the absolute value sign duwer

11l. NUMERICAL RESULTS AND DISCUSSION
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t

in

FIG. 2. el, e2, e3 electron anchl, h2, h6 hole wave func-
tions calculated within one and three band models correspondingly.
Light and dark colors denote positive and negative values of the
wave function. Each electron wave function is represented by the
isosurface of the probability densip,=0.8. Each of three compo-
nents of hole wave functions is represented by the isosurface of the
probability densityphx= Ph,=Pn,=0.8 of the particular wave func-
tion component. The relative contribution of all three hole compo-
nents to the integral probability density is indicated near each wave
function component.

e3 are nondegenerate apd is threefold degenerate. In the
rest of Fig. 2,X, Y, andZ components of the wave functions
of threefold degenerate lowest hole statds h2 and the

stateh6 are presented. Our choice of the Bloch function
basis(10) is convenient for tetrahedral QD’s, because it al-

Parameters employed for the calculation of electron, holelows us to choose and present one such particular three-band
and exciton states in tetrahedral and spherical CdS QD’s amgave function of a triply degenerate state, that two other
listed in Table I. The calculation of electron and hole stateshree-band wave functions can be easily found from the sym-
in tetrahedral and spherical QD’s has been carried out aanetry considerations. It should be noted, that while the wave
cording to Sec. Il A. In order to find electron and three-bandfunction el of electron ground state is fully symmetrical, a
hole states in a tetrahedral QD, the grid with step lengttully symmetrical component does not enter the hole ground
2a/60 has been used. 20 lowest electron states and 43 lowestitehl and appears only ih2 (h2y). 20 lowest electron

hole statesincluding degeneragyhave been computed using
the matrix electron Hamiltonian of ordgv=68 499 and the
matrix three-band hole Hamiltonian of orden/3-205 497
correspondingly.

In the upper part of Fig. 2, wave functions of the threev

lowest electron states are shown. Among those stateand

energy levels for tetrahedral, cubiédland spherical CdS
QD’s are listed in Table Il as a function of QD volume. It is
seen that the electron ground state energy as well as inter-
level distances decrease in the sequence of QD’s with equal
olumes: tetrahedral- cubical— spherical. It is also seen,
that interlevel distances in QD’s with equal ground state en-
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TABLE II. First 20 electron energy leveléincluding degen- hedral CdS QD, the energy interval between the 1st and 86th
eracy in tetrahedral, cubical, and spherical CdS QD’s. The degenhole levels is two times narrower than the energy interval
eracy is indicated for each level. Electron ground state energyetween the 1st and 2nd electron levels. The latter leads to
((jr_l;fe\/) at‘S %g’”d'?‘” of the Qget‘r’(‘\’/';‘mggg@)“?';wgg"cu'é‘f:ﬁ;vf)or the conclusion that inclusion of the electron ground state

eren shapes —as &, (V)= o305, v F1 only is enough to describe main optical transitions in
=5641.09%%3 andESP(V) =4886.16V2". c dé QD's 9 P
Etet et Eouby Eeub EsphyEseh The oscillator strengthsee Sec. Il Cof electron(ground

n_ Tt ot no Tt state-hole pairs are shown in Figs(@ and 3d) for spheri-

>

1 1.00000 X1  1.00000 X1 1.00000 X1 cal and tetrahedral QD’s correspondingly. Hole levels with
2 1.84426 X3 200000 X3 204575 X3 nonzero oscillator strengths are depicted in Figs) &nd

3 275952 X1  3.00000 x3 3.36563 X5 3(b) with thick curves. One of the substantial differences in
4 292786 X3 3.66667 X3  4.00000 X1 the hole energy spectra of spherical and tetrahedral QD’s is
5 3.05766 X2  4.00000 X1 494763 X7 that the hole ground state is always optically passive in
6 401524 X3 466667 X6  6.04680 X3 spherical QD’s and, on the contrary, optically active in tetra-
7 420920 X1 566667 X3 hedral QD’s. In conformity with Eq(32), the dependence of

8 436315 X3 oscillator strengths on the QD size is a consequence of the
9 453292 X3 nonzero value of the spin-orbit splitting energyin CdS.

It is interesting that the optical activity of the hole ground
L _ state in tetrahedral QD raises with increasing of the QD
ergies increase, on average, and the highest order of dege('ﬁ'mensiona

eracy rises in the aforementioned sequence. The electron-hole potential enerd@$7) in spherical and

Using the wave functions of the three-band hole Hamil- , .
tonian found above, 86 states of the six-band HamiItoniar%errahedr"’1I QD's has been calculated according to Sec. Il B.

are computed as given by E@.4) for all required values of A composite grid with parameters =2.4a, N :.36’ and .
the QD dimensiora. In Figs. 3a) and 3b), hole energy K=5 has been emplqyed to calcullate the potenthl energy in
levels, calculated within the six-band model, are depicted fof€trahedral QD’s. While the resulting step length in the QD
spherical QD’s as a function & and for tetrahedral QD’s as "€gion is %1/30_, i.e., twice coarser than the step length used
a function ofa, respectively. The hole energy is counted N the calculation of electron and hole states, the volume of
from the lowest state containing a fully symmetrical compo-the considered space region is 648 times larger than the QD
nent: 1S, for spherical QD’s and 4 for tetrahedral QD’s volume. Dlsc_retlzatlon of the Pplsson equatids) on the

(the dependence of the reference level on the correspondirfifscribed grid leads to the linear system of ordef
dimension is indicated in insejtsLevel labeling has been =218051. This system should have been solved for each
described in Sec. 1l A. noden, inside the tetrahedron, i.e., 8149 times.

The size quantization of an electron in CdS QD’s is much  Since for the investigation of optical transitions and for
stronger than that of a hole. This fact is related to the comthe calculation of exciton states in QD's we should be con-
plex structure of the valence band as well as with the value§erned only with the electron ground state, the matrix ele-
of the effective-mass parameters. Thus, in the case of tetranent of the electron-hole potential eneryﬁ';}” from Eq.

T 125 ———

E,(15,,) = 698.0/R™" (meV)

.
wob 3 Ejy=9283/a"" (meV) |

\?‘51100 . f\ N 1Py 35, S 75

a | FIG. 3. Quantum confinement
;U“; hole energy levelgupper panels
Lﬂi and oscillator strengths of some
8

electron-hole pair stateglower
panel3 for spherical [panels (a)
and (c)] and tetrahedralpanels
(b) and(d)] QD’s as a function of
their dimensions. Thick curves in

%; R]SSIZ %’; panels(a) and (b) r_epresent hole
5 08F 157 O S08f states corresponding to eIe(_:tron
bt b=t (ground statghole pairs with
goaf g4 nonzero  oscillator  strengths
-1 38y, 285 2 shown in panelgc) and (d), re-
g oz b go.z spectively.
5 S
8 0.0 PRI T T SN BT T S U BN S S A By (c) 800 I I U S ST N U S ST RS S S S S S S

10 15 20 25 30 35 40 45 1 2 3 4 5 6

R (nm) a (nm)
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Fig. 5 show the potential energy profile along three main
directions of a tetrahedron. Dashed curves in Figs. 4 and 5
give the averaged potential energy(r,,) in the absence of
the dielectric mismatch at the QD boundary, namely, when
e¢'=g. It is seen that even in our case wherk’'~3, the
potential energyJ (ry,) does not differ significantly from the

600 |
400 |
200 |

pn(r) (nm meV)

- 200 casee’ =¢ (the reasons of such behavior have been indi-
400k cated at the end of Sec. Il B 1 and discussed in Ref. A8
™ § also seen from the figures, the dielectric mismatch effect
-600

Ay S TP I S diminishes the effective size of QD’s. Comparing Figs. 4 and
0.0 : I . ) ) 5 one can see that due to the complicate shape of the QD
boundary, the aforementioned diminishing is more pro-
FIG. 4. Coulomb potential f the electron-hol ‘ nounced in tetrahedral QD’s. This fact should have a strong
- & oulomb potential energy of the eleclron-hole systeMqa ot oy the electron-hole pair states in tetrahedral QD’s.
for a spherical QD averaged over the wave function of an electron - - . .
. ) Exciton states and their oscillator strengths for spherical
in the ground state. Solid curve denotes the sum of the Coulomb d tetrahedral OD's h b lculated dina to S
energy of the electron-hole interaction accounting for the dielectri and tetrahedral QD's have been calculated according to Sec.

mismatch between the QD and the surrounding media and of eleﬁl C. For s_pherlcal QD,S’_ as far as we are concerned with
tron and hole self-action energies. Dashed curve denotes the buﬁ'ply Spherlcal!y symmetrlc electrop ground state. and the av-
Coulomb energy with the dielectric constant of the Qrtical ~ €raged potentiall(ry) is also spherically symmetric, exciton
dashed line indicates the confinement potential energy states have the same set of quantum numbers as hole states.
Analogously, because electron ground state and the averaged
, potential U(ry,) are tetrahedrally symmetric in tetrahedral
(35) reduces thgjﬂ . The latter fact can be thought as a hole QD’s, the sets of quantum numbers in such QD’s are the
confined in a potential well(r,) created by an electron in same for hole and exciton states. To obtain exciton states in
the ground state and by the dielectric mismatch. This potentetrahedral QD’s, we have used 86 coefficieBts, in the
tial well is the electron-hole potential ener¢y7) averaged sum(33), i.e., all calculated hole states have been taken into
over the wave function of an electron in the ground stateaccount.
There is no necessity to compute the electron-hole interac- In Figs. §a) and Gb), exciton energy levels are shown as
tion energyVi(re.ry) for each value of and later, when a function of the QD size for spherical and tetrahedral QD’s,
averaging Eq(17), to averag®/,(re,rn) overre. Itismuch  correspondingly. The exciton energy is counted from the
simpler to average Eq.18) over the wave function of an lowest exciton state containing a fully symmetrical compo-
electron in the ground state and then to solve it with respeatent. The dependence of the reference energies for both
to the averaged potential energy(ry,). Unfortunately, there  QD’s on the QD size is given in insethere, as well as in
is no such simplification for the calculation of the self-actioninserts to Figs. 3, 7, and 8, coefficients in the analytical ex-
energyVg.,(r) and it is still necessary to solve the linear pressions are fitted using the least squares metiofferent
system of 218 051 equations 8149 tineslculation of the types of curves in Figs.(8) and Gb) correspond to the same
self-action energy in tetrahedral QD’s turned out to be theypes of curves in Figs.(d@ and 3b). In Figs. &c) and &d),
most tedious one nonzero oscillator strengths for exciton states in spherical
The averaged potential enerdy(r,) is represented by and tetrahedral QD’s respectively are depicted as a function
solid curves in Figs. 4 and 5 for spherical and tetrahedrabf QD size. Corresponding energy levels are represented in
CdS QD’s in HO correspondingly. Three solid curves in Figs. §a) and 6b) with thick curves.
Exciton energy levels in spherical and tetrahedral QD'’s

e o o are resembling to a considerable degree. For instance, exci-
750 ) = ] ton ground states,lin tetrahedral QD’s with ang and 1S3/,
500 ; ::/I_ in spherical QD’s withR>1.35 nm have a fully symmetri-
N & :T@ ! cal component. Another similar feature is the presence of an
8 &0 i | it 1 exciton level (1S;, for spherical QD’s and A for tetrahedral
E 0 E = = QD's) equidistant from the exciton ground state for any QD
=. 250 JLIERES ¥ size. The aforementioned pair of energy levels as well as
= = ground state energy levels in both QD’s have also a similar
s - 500 A E dependence of their oscillator strengths on the QD size. The
-750 F _.* ] above facts allow one to conclude that the self-action poten-
et 1

el b e b b L L tial energy diminishes the effective size of the tetrahedron in
00 02 04 06 08 10 12 14 16

i such way, that it looks similar to a tetrahedrally deformed
ria

sphere. In fact, the distance between three vertical dashed
FIG. 5. The same as in Fig. 4, but for a tetrahedral QD. Thredines in Fig. 5(real boundaries of the tetrahedyds larger

dashed and three solid curves indicate three different directionghan the distance between three almost vertical parts of solid

from the center of the tetrahedron: to the center of the face, to thines, which show an effective QD size.

middle of the edge, and to the vertékom left to right. Hole energy levels in Figs.(8 and 3b) can be thought
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250 T Ty T T T 250

T T T T L e
E, (18,)=E,+ E(R)+ E, =E,+E,(a)+ :
- o ()(/R‘j'g’ 43g1 9/1;0( o] 20f 3; e ?978_;:3364? - FIG. 6. Exciton energyllevels
% 1D, N VRT= BLIR meV)y & a 4/a (me (upper panels and oscillator
§15° 1 E150F strengths of some exciton states
23100 §100 NN S ] (lower panels for spherical[pan-
< _/ Lo N ——e = els (a) and (c)] and tetrahedral
' 80 pHommm === ny 50 ——— T TEee 3 [panels (b) and (d)] QD’'s as a
o I o 0 - < function of their dimensions.
1Py, |1P3/2 LS, . (a) oL . 2 . . ) Thick curves in panel§) and (b)
10 15 20 25 30 35 40 45 1 2 3 4 5 6 represent exciton states with non-
a (nm) zero oscillator strengths shown in

4
™

panels (c) and (d), respectively.
Different types of curves in panels
(@ and (b) originate from the
same types of curves that repre-
sent hole states in Figs(a8 and
3(b), correspondingly. In the in-
serts,Egq is the bulk CdS gap en-

o
o
T

oscillator strength (exciton)
oscillator strength (exciton)
o
F'S

0.2 .
ergy andE, is the quantum con-
S A TR SPIT DIE TP . finement electron ground state
T 2 3 4 5 6 energy.
a (nm)

as electron-hole pair levels without the dielectric confine-has large oscillator strength which is practically unchanged
ment contribution if the bulk CdS gap and the electronwith varying the QD size.
ground state energies are considered added to the hole refer-In the spherical six-band hole Hamiltonian used to calcu-
ence energy. Therefore, comparing Figs. 3 and 6, one cdate hole states in spherical QD’s, the Luttinger parameters
arrive at the following conclusions about the influence of theobey the conditiony,= y;=7y. However, using parameters
Coulomb potential energy of the electron-hole system on thérom Table |, one can obtain that,= (L —M)/6=0.633 and
exciton spectra in spherical and tetrahedral QO3: in v3=N/6=0.939 are different. Therefore, one can expect that
spherical QD's, the relative position of levels changes; it isthe difference between, and y; will result in small correc-
also seen that optically active exciton states become energetions to the hole and exciton spectra in spherical QD's, for
cally more favorable than optically inactive ong$) in tet-  example, some degenerate in cage=y; levels can split
rahedral QD’s, electron-hole pair states mix essentially whemlue to the reduction of the Hamiltonian symmetry from
forming exciton states which in their turn tend to reproducespherical to cubical. It has been checked, however, that no
the picture of exciton states in spherical QO(#i,) in both  substantial changes occurs in the degeneracy and relative po-
QD’s, a regularity is observed that the exciton ground statgition of lowest hole levels when the cage+ y; is consid-
ered. On these grounds one can conclude that all similarities

700fF N T e and distinctions revealed in the spectra of spherical and tet-
I T 1059~5/R0999 (meV) rahedral QD’s are not connected with the accepted approxi-
: N, T 512.2/R (meV) mation to calculate hole states, but are ruled by the QD
% 500 F, o exciton binding energy shape.
E 400 b g e, ] We have specially considered the influence of the dielec-
53300 5 Tl O ] tric mismatch at the QD boundary on the binding energy of
g AN~/ TTr— the exciton ground state in spherical and tetrahedral QD'’s.
S200fF / —
E L0890, e T ITm~eel
100 F 4243/ (mev) ~—  —————ST==--- e ——
: 700 F : ]
)| AP SN SIS B S TS VoEEd e 1252.5/a"" (meV)
10 15 20 25 30 35 40 45 600 F R 588.1/2" (meV) |
R (nm) 6 \ Mo ) o ]
% N, exciton binding energy 7

FIG. 7. Binding energy of the exciton ground state in a spherical £ 400
QD calculated using the Coulomb potential energy accounting for 55300
the dielectric mismatch between the QD and the surrounding media &
as well as for the self-action energy of an electron and a (uzish- © 200 |
dotted ling and using the bulk Coulomb potential energy with the 100 | /. pRX
dielectric constant of the Qdashed ling The difference between 287.9/a""" (meV) :
the quantum confinement gap energy and the exciton gap energy is 0= 1' — ; — :; — ';' = '5 = 5
plotted with the solid curve. The distance between the solid and a (nm)
dash-dotted curves shows the sum of dielectric confinement contri-
butions to electron and hole energies. FIG. 8. The same as in Fig. 7, but for a tetrahedral QD.

~.
-~
~.
~——
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Using Eq.(17), Eq. (27) can be rewritten in the form a (nm)
2.0 3.0 4.0 5.0 6.0 7.0
s " N 4500\..I""I""I""I""I""I"‘
Hexe=[He(re) + Vsa(re) ]+ [Hg(rn) +Vea(rn)] \\ Exper*iment The*ory
\.‘-‘ Vossmeyer et al. () Lippens and Lanoo (TB)--—-—
+Vint(rearh)- (36) % 4000 \'-_‘ Katsikas et al. (&) [ and Xia (wurtzite k-p)------- ]
- N . g \\, Wang et al. 60
The definition of the exciton binding energy in QD’s kg, B v N — A I
=E¢+ E;,— Eqy, Where the electrohole) energyE, (Ey) g i O ---1
is the eigenenergy of the Hamiltonian in the fitsecondl g
parentheses in the right-hand side of E8p) (see, for ex- § ]
ample, Ref. 38 This definition of the exciton binding energy O e e
includes the self-image effects in the single particle energies. 5 I Sy o v
' : o : 500
Alternatively, the exciton binding energy can be defined as 10 15 20 25 30 35 40 45
the difference between the single particle energies without R (nm)

the self-image effects and the exciton energy. Another defi- ) ) ]
nition will be just a different way of partitioning the exciton  F!G- 9. Exciton ground state energy as a function of the ralius

energy. As previously discussed, the electfoole) energies 0" spherical CdS QD's and as a function of the dimensioisee
DC Fig. 1) for tetrahedral CdS QD’s. For a given enerByis the radius

can be ertten’ a%ec(h) _Q%e(h)+AEe(h)' For spherical and ;% sphere inscribed in the tetrahedron with dimensioBoxes
.tetrahedral Q_D sk By o andEeyc hgve beep represented (Ref. 27), triangles(Ref. 49, and crosseéRef. 50 are the experi-
in Table II, E'Cg-_ 3, and Fig. 6 respectively. Since the calcu-menta| points; dash-dotted curve is the result of a tight-binding
lation of AEg ;) is straightforward, we restrict ourselves with cajculation(Ref. 51); dotted curve is the result ofka p calculation
the description of the main results. When energies are medor wurtzite nanocrystaléRef. 45. Solid and dashed curves are the
sured in meV and dimensions are in nm, we have in sphericaheoretical results of the present paper for tetrahedral and spherical
QD's: AEQ©=326.7R for the electron ground state energy QD’s correspondingly.
and AE]“=308.5R for the hole ground state energy and in
tetrahedral QD'SAEDC=476.7A and AEP©=487.3a for  in recent theoretical and experimental studies. Solid and
the electron and hole ground states energies, correspondashed curves in Fig. 9 represent our results for tetrahedral
ingly. It is interesting to note, that the picture of the lowestand spherical QD’s, respectively. As seen, the exciton ground
hole energy levels in their self-action potential resemble Figstate energyE,,.o for a relatively large tetrahedral QLR(
3(a) for spherical QD’s and Fig. (8) for tetrahedral QD’s. >3.5 nm) is close tde,,, for the spherical QD inscribed in
This fact shows that the main reason of mixing the electronthe corresponding tetrahedroR+a/+/3). This fact can be
hole pair levels from Fig. 3 into the exciton levels form Fig. explained if we note that the Coulomb potential energy of the
6 is the electron-hole interaction energy for spherical QD’selectron-hole system in the central region of a relatively
and the hole self-action energy for tetrahedral QD’s. large tetrahedral QDi.e. at the bottom of the potential wegll
The exciton binding energy in spherical and tetrahedraklmost coincides with this potential energy in the central re-
QD's with the dielectric mismatch is shown with dash-dottedgion of the spherical QD inscribed in the tetrahedfoom-
lines in Figs. 7 and 8, respectively. Solid lines in these fig-pare Figs. 5 and)4The exciton ground state enerByygqin
ures represent the difference between the quantum confine- relatively small tetrahedral QD is less th&n,., in the
ment gap energyH3+ERQC) and the exciton gap energy spherical QD inscribed in the tetrahedron, because electron
e h
(Eexd accounting for the dielectric mismatdthe potential and hole densities penetrate substantially in the direction of
plotted in Figs. 4 and 5 with solid lines has been gysatti  edges and vertices of small tetrahedral QD's.
dashed lines represent the binding energy when the dielectric The dash-dotted curve in Fig. 9 represents the exciton
constant of the surrounding medium is equal to the dielectriground state energy for spherical CdS QD’s wiR
constant of the QOthe potential plotted in Figs. 4 and 5 <2.5 nm calculated in Ref. 51 using the tight-bindi{idB)
with dashed lines has been uged is seen from Figs. 7 and method for single particle electron and hole states and the
8 that the dielectric mismatch at the CdS$(Hboundary potential energy of the electron-hole interaction for a bulk
leads to the enhancement of the exciton binding energy i€dS crystal. For such small QD’s, the TB method should
both spherical and tetrahedral QD’s by a factor of 2. Thegive more accurate single particle electron and hole states
exciton binding energy consists of the direct Coulomb en+than thek-p method used in this paper. However, as we have
ergy that does not depend eri (dashed curvesand the shown, the dielectric mismatch at the CdS boundary also
polarization contribution that depends strongly eh (the  cannot be neglected. The applicability of continuum macro-
difference between dash-dotted and dashed curfée po-  scopic electrostatics for very small structures with sizes of
larization contribution to the exciton binding energy tends toonly few unit cells has been proven in Refs. 52 and 53 taking
cancel the dielectric confinement contributions to the elecinto account the spatial variation of the dielectric constant.
tron and hole energies, what results in a weak dependence bfgures 4 and 5 show that the dielectric mismatch at the
the exciton gap energy on the dielectric environnfént. CdS/H,0 boundary should increase the exciton ground state
The exciton ground state energies as a function of QDenergyE,., This can explain the fact that the values of
size for spherical and tetrahedral CdS QD's calculated in th&,, ., calculated in Ref. 51 are lower than the experimental
present work are compared in Fig. 9 with the results obtainedalues of Ref. 21(boxes in Fig. 9.
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Triangles in Fig. 9 represent the experimental points fromever, taking into account the finiteness of the potential barrier
Ref. 49 for CdS QD’s with cubic crystal lattice. In the latter should lead to a better agreement with the experiment.
reference, the theoretical energies of exciton states calculated The k- p model is an extrapolation for the smallest QD’s
as in Ref. 54 are also presented. Despite the fact that Ref. §avestigated in this paper, because the conception of the en-
takes into account only one hole band, an excellent agrea€lope wave function becomes dubious when the size of
ment with the experiment has been found for the excitorRD’S is only few unit cells. However, the results obtained
ground state. The one-band hole mass from Ref. 5dyjs Within the k-p model for such small QD’s turn out to be
—0.8m,. Values of heavy and light hole masses within theclose to the correct results. For %*xamplle, .the_multlblarmi
six-band model considered in the present paper are listed fmodel can successfully describé the distribution of elec-
Table I. In the region 2.5 nmR<3.5 nm, the six-band tron and hole densities in QDQW's with only one-monolayer

model gives the hole ground state energy, which is 1.5 timeﬁj"ctktr?uar.m;]'tnbweg' More((j)vler, it has fbiendfoun% n tRhef. o7
larger in absolute value than the corresponding result of th atine eight-bandl- p Model successiully describes the ex-

one-band estimation of Ref. 54. Since our accurate results farimentally observed level structure and relative transition

. . intensities in spherical InAs QD’s down to about 1.2 nm in
the exciton ground state energy are slightly larger than th'l:"adius. Thus, we can conclude that the exciton states and

experimental points of Ref. 49, the above better agreemeny .| transitions obtained in the present paper for spherical

with the calculation of Ref. 54 must be a result of the selec-and tetrahedral QD’s will not change noticeably if one uses

tion of the one-band hole mass. _ another approach, such as TB. One can also say that in order
Noticeable scattering of the experimental points from Refyq gescribe electron and hole states near the edges and verti-
21 is probably due to the uncertainties in the determinatiorges in the tetrahedral QD’s, it is necessary to take into ac-
of the effective radius of tetrahedron-shaped QD’s. The scalcount highk states that are beyond the limits of tkep
tering can be also due to the fact that while the crystal strucmodel. On the other hand, as seen from Fig. 2 and from the
ture for the smallest QD’s was determined to be cubic andact that electron and hole ground states in large tetrahedral
for the largest QD’s it was found to be hexagofalrtzite), QD’s almost coincide with those states in the inscribed in the
the crystal structure of other samples seemed to be neithégtrahedron sphere, electron and hole densities near the edges
cubic nor hexagonal. Crosses in Fig. 9 show the experimerand vertices of the tetrahedron are extremely small. Another
tal points from Ref. 50 for wurtzite CdS QD’s. The exciton theory should not give any substantial corrections in this case
ground state energy in wurtzite QD’s is substantially higheras well.
than this energy in QD’s with cubic crystal lattice. The dotted ~One can see from Fig. 9, that the QD shagpgherical or
curve in Fig. 9 shows the result of the six-bamkdp tetrahedrgl does not have any principal influence on the ex-
calculatiorf® for wurtzite QD's by Li and Xia who did not citon ground state. In this connection it is interesting to con-
take into account the dielectric mismatch. sider next exciton states. Exciton energies of allowed optical
Summarizing the results presented in Fig. 9, we can stat#ansitions in spherical and tetrahedral CdS QD’s counted
that our exciton ground state energy in both spherical anéfom the exciton ground state energy,o are plotted versus
tetrahedral QD's is close to the experimental data of Refs. 2Eexco IN Fig. 10. Relative oscillator strengths of the optical
and 49 for CdS QD’s with cubic crystal lattice. Comparingtransitions are represented by the size of the corresponding
the theoretical results of different authors, it is seen that theymbols. Due to the high symmetry of spherical QD's, the
TB calculation gives lower exciton ground state eneffgy,, number of optically active exciton states is snidtiere are
and thek - p calculation for wurtzite QD’s gives highdf,,., ©nly four such states in Fig. 10For tetrahedral QD’s, in
than ourk - p results that also take into account the dielectricaddition to the four states with large oscillator strengths,
mismatch at the QD boundary' Unlike other papers, our exthere are a lot of states with very small oscillator Strength. It
citon states depend on the dielectric constant of the exteridp Seen that first two optically active exciton sates are similar
medium, therefore, taking into account the exact dielectridn QD’s of both shapes. The third and fourth exciton states
environment of each particular experiment should bring outith large oscillator strength are higher in energy for spheri-
results closer to the corresponding experimental points. @l QD's than they are for tetrahedral QD’s. For small QD's,
The Stokes shift in CdS QD’s has been observed in Retthis difference in energies is of order of hundreds of
49. At the same time, our calculation gives optically activemillielectron-volts. This fact shows that optical transitions
exciton ground state. The situation here is similar to that innvolving higher exciton states are different for spherical and
case of spherical InAs and CdTe QD’s where the Stokes shifetrahedral QD's. Thus, we can conclude that having an ex-
has been explainéd® employing the electron-hole spin- Perimental optical spectrum of a single QD and knowing the
exchange interaction. This interaction splits the optically ac2Pproximate dimensions of the QD, it is possible to estimate
tive exciton ground state into few states, the lowest of whicihe shape of the QD. The knowledge of the QD shape in its
is optically passive. turn engble_s a thor_ough theoretic_:al inve_stigation_ of pther QD
Calculated in the present work, exciton ground state enProperties in the direction of their practical applications.
ergy as a function of QD size is only an approximation for
QD's.wit.h R<1.5 nm ;ince thg penetration of the ele'ctron IV. CONCLUSIONS
density into the exterior medium becomes substantial for
such small QD’s and, consequently, the hard wall boundary A theory of electron, hole, and exciton states in spherical
conditions for the electron wave function cannot work. How-and tetrahedral CdS QD’s has been developed. Exciton en-
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L L R R i B T T function of an electron in the ground state, in a tetrahedral
e ©Q RN oo QD forms a 3D potential well with the profile of a truncated

Pl i : tetrahedron with smoothed edges, i.e., a tetrahedrally de-
o 0o o formed sphere. This effect can be explained by the increase
A : of the self-action energy near the intersections of two or
° : three face plains of the tetrahedron.

The lowest electron-hole pair energy is found to be opti-
cally passive in the spherical QD. This fact is known to lead
to some difficulties in the theoretical interpretation of ob-
0 | @EESIIITNTEC000 00 © O . served photoluminescence spectra. In contrast to spherical

oon oEon on mon o o o000 QD’s, lowest electron-hole pair energies in tetrahedral QD's

E,, (meV) are optically active. The Coulomb potential energy influ-
ences the exciton spectrum in spherical QD’s in such way

FIG. 10. Exciton energies of allowed optical transitions in that relative position of electron-hole pair levels changes and
spherical(gray disk$ and tetrahedralcircles CdS QD's counted |owest optically active exciton states become energetically
from the exciton ground state enerfy,,o and plotted versuEeco0.  more favorable than optically inactive ones. Unlike electron-
Relative oscillator strengths of the optical transitions are repreqole pair levels, exciton energy levels in spherical and tetra-
sented by the size of gray disks for spherical QD’s and by the sizggya] QD's have many similar features. For example, exci-
of circles for tetrahedral QDs. The rightmost gray disks correspong, ground states in a tetrahedral QD of any size and in a
toa Q_D withR=1.2 nm and the rightmost circles correspond to aspherical QD of almost any radii are optically active. The
QD with a=1.7 nm. Each nextfrom right to lefy gray disk or o0 ng states in both QD's have large osciliator strengths
circle represents the QD with a respective dimensi@rof a) in- hich are practically unchanged with varying the QD size
creased by 0.1 nm. Highest excitonic transitions in the region O%N The dielectric mismatch at the CdS/®l boundary leads ’
lowestEexco have not been calculated. to the enhancement of the exciton binding energy by a factor

ergy spectra have been calculated using the Coulomb poteRf ™o in both spherical and tetrahedral QD's. Calculated
tial energy of the electron-hole system accounting for theé€xciton ground state energies for_spherlcal and tetrghedr_al
dielectric mismatch between the QD and the surrounding=dS QD’s have been compared with the results obtained in
media as well as for the self-action energy of an electron anecent theore_tlcal and exp_enmental studies. A satisfactory
a hole. One-band electron and six-band hole wave function@dreement with the experimental data has been found. A
and corresponding energy levels as well as the Coulomb Iod:_lear _dlstlnctlon in the optical properties of tet_rahedral and
tential energy in spherical QD’s have been found ana|yti_s_,pher|cal QD’; ha_s been revealed. In conclusion, we estab-
cally. For tetrahedral QD’s, one-band electron and three-bantghed that taking into account the real shape of the quantum
hole states £ =0) as well as the Coulomb potential energy dots and Coulomb potential energy Wlth the dlelec_trlc mis-
have been found numerically using the finite diﬁerencematCh_ at the QII? boundary are essential for theoretical inter-
method. Six-band hole states ¢ 0) have been computed by Pretation of exciton optical spectra.
expanding six-band wave functions in terms of three-band
ones. Exciton wave functions in both QD’s have been ex-
panded in terms of wave functions of electron-hole pair
states. Oscillator strengths of electron-hole pair and exciton The authors acknowledge useful discussions with Profes-
energy levels have been calculated as a function of the QBor J. T. Devreese and Professor V. M. Fomin. The research
size. described in this publication was made possible in part by
It has been shown that the aforementioned potential erthe U.S. Civilian Research & Development Foundation for
ergy of the electron-hole system, averaged over the wavthe Independent States of the Former Soviet UtORDF).
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